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Four Frames SufTice:
A Provisionary Model of Vision and Space

Jerome A. I'eldman
Computer Science Department
‘The University of Rochester
Rochester, NY 14627

TR99
September, 1982

‘\ Abstract

‘T'his paper presents a general computational treatment ol how manmals are
able to deal with visual objects and environments. Among the issues addressed are:
constancies and the stable visual world, indexing and context effets, perceptual
generalization and allocentric spatial maps. The computational model is expressed
connectionist terms, allowing biological as well as psychological experiments to be
included. The model relies heavily on contemporary work in Artificial Inteltigence,
but is claimed to be consistent with all relevant findings.

The preparation of this paper was supported in part by the Delense Advanced
Research Projects Agency Grant No. N00014-82-K-0193 and in part by Defense
Advanced Research Projects Agency Grant No. N00014-78-C' 01064,
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1. Introduction

This paper is an attempt to specify a computationally and scientifically plausibie

model of how mammals perceive objects and deal with their visual environments, "
The provisionary model is perforce crude, but is claimed to be consistent with all of ]
the known behavioral, structural and computational constraints. The perspective E
taken is that of a designer of complex information processinﬁ systems--one_simply
sets out to see how a visual system meeting the known behavioral specifications :
might be built out of the neural componentry, as described in the literature. The
resulting four-frames model appears to be a reasonable start.

(A ST

The rest of this introduction is mainly concerned with describing the main
phenomena to be covered by the model and the role of the four representation
frames that are the core of the model. The actual specification of the model requires
a fair amount of machinery and this is outlined in Section 2. The necessary
machinery includes a formal specification of an abstract neural computing unit and a
variety of constructions built of these units and their properties. All of this is part of
the connectionist modelling (CM) development [Feldman & Ballard 1982; I‘eldman .
1981) and readers familiar with that material will discover nothing new in Section 2. ]

. JERRRN

In Section 3, we describe the four-frames model of vision and space as it would
apply to a "Small World" of limited complexity and resolution. By limiting ourselves
to six visual features and a 10 x 10 visual map; we are able to describe precisely how
the basic operations are intended to work. Section 3 is also oversimplified in that
only the main pathways are mentioned and in the suppression of many technical
groblems in reducing the Small World to the mechanisms of Section 2. Section 3 can

e read before Section 2 without much loss, for people who prefer to view the forest
before the trees. ‘

The serious work begins in Section 4 where we attempt to carry out the reduction
of the four-frames model to CM structures. Although the examples are presented at
the scale of the Small World, the computational techniques are claimed to work at
realistic scale. The purpose of the section is to confront all the basic computational
issues that have come to my attention and to show that none are insurmountable.
The solutions are presented at varying levels of detail and some refer to previous
computational ‘results. There is no attempt in this section to relate the four-frames
model to experimental findings in the behaviorai and biological sciences.

Section 5 contains a preliminary attempt to relate the model to experimental
findings. The claim that the model is consistent with all established results cannot be
tested except by readers such as yourself. What is -presented is a range of solidly
established findings that fit in well with the current model. Some experiments that
could yield challenging results for the current model are also suggested, probably not
with sufficient detail.

' The discursive comments of Sections 1, 3 and 5 derive from the detailed
computational models of Section 4 and may not be easy to interpret in isolation. The
particular computational models are intended to show the feasibility of the model
and should not be taken too literally. More generally, the provisionary nature of the
current model cannot be stressed too strongly. The four frames are an atlempl lo
provide a scaffolding for the establishment of theories of vision and space; if it
proves to be useful and none of the scaffolding is visible in the resulting structure, it
will have done its work.
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The entire development is based on a action oriented notion ol perception. The
observer is assumed to be continuously sampling the ambient light tor information ol
current value. We initially consider the issues raised by the four trames as
phenomena to be captured independent of any particular structural model. A
"frame” in this view 1s a set of experiences and experiments that seems 10 Share a
common representation. Most people have found the following kind of loose
discussion an adequale reason to suppose that we will need at least four frames of
reference to describe vision and space.

NRAT._J N
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The representation of information in the first frame is intended to model the
view of the world that changes with each eye movement. The second frame must
deal with the phenomena surrounding what used to be called "the illusion of a stable
visual world.”" A static observer has the experience of (and can perform as if he held)
a much more uniform visual scene than the foveal-periphery first frame is processing
at each fixation. One can think of the second frame as associated with the position of
the observer’s head; this is an oversimplification but conveys the right kind of »
relation between the first two frames. Of course, neither of these two frames is like a ~
photographic image of the world--as even the most casual examination of the
structure of the visual system shows clearly. light striking the retina is already
transformed and the layers of the retina, the thalamus and visual cortex all compute
complex functions. The crucial difference between the first two frames is that the
first one is totally updated with each saccade and the second frame is not. The
current model also assumes that the first (retinal) frame (RI°) computes proximal
stimulus features and the second frame captures distal (constancy. intrinsic) features
as well as being stable; it is therefore called the stable feature frame (SI'1°). That these
two representations of visual information are distinct does not seem an unreasonable
hypothesis. '

A

)

The third and fourth representational frames are both multi modal and thus
unlikely to be the same as the first two. The third representation is not geomelrical
and will be described in the next paragraph. The fourth, or environmental frame
(EF), is intended to model an animal’s representation of the space around it at a
given moment. It captures the information that enables one to locale quickly the < 4
source of a stimulus from sound, wind, smell or verbal cue as well as maintaining the |
relative location of visual phenomena not currently in view. I‘or a variety of reasons, -
the model proposes a single allocentric environmental frame which gets mapped, by
situation links, to the current situation and the observer's place in it

. St
fanimas 't 8

The final representational frame to be considered is the observer's genceral
knowledge of the world, including items not dealing with either vision or space. We
follow the conventional wisdom in assuming that this knowledge is captured in
abstract or propositional form, modelled in our case by a special kind of semantic
network. One kind of knowledge encoded will be the visual appearance of objecls.
Since the other three representations are geometrically organized, we will refer to the
collection of semantic knowledge as the world knowledge formulary (WKI), 1o
emphasize its nature as a collection of formulas. The WK will carry much of the '
burden for integrating information from the other three frames and is far from
adequately worked out in this paper. But a!l we need for now is the notion that the
semantic network representation is likely to be quite different from that of the
retinal, stable feature or environmental frame. All of this suggests thal even a
provisionary model of vision and space will require at least four representational
frames; that four frames suffice is the contention of this paper.
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The initial exposition of the four frames was based on a slatic observer and a
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b will retain this restriction, but the model does attempt to cover motion as well. ‘The

{ major additional construct needed for moving objects is to postulate explicitly that

' the entire system has a second mode of operation, which we call pursuit mode. To gel
a feeling for the difference between the two modes, track your finger as you move it ._
along the second line of text on this page. Now go back and read the line of texl, 4
using your finger as a pointer. There is considerable evidence that the pursuit mode
is computationally distinct and is used for navigation while moving as well as for
tracking. The interactions among the four frames in the model are different in
pursuit mode, but we will not discuss these seriously until Sections 4 and 3.

)
’
<
: basically static environment. Most of the detailed discussions in subsequent sections ;3
"
’

-

- One of the principal devices employed in the current model is the assumption
g that all the visual features of interest can be reduced to explicit parameter values in
some representational space. Typical parameter spaces include color spaces, spatial
b frequency channels and slant-tilt maps for surface orientation. 'The mapping of
; primitive shapes, of textures and of motions to parametler spaces rematns
- problematic, gut the model assumes that it must be done. A compulational
- advantage of this total parameterization of visual features is that all the subsequent
discussion can be framed as discrete computational problems, More importantly, the
S assumption that early vision computes discrete values of fixed paramelers supports a
; clear view of phenomena such as apparent motion. I'rom the stream of visual input,
the visual system continuously calculates the best fit lo the critical parameters. The
3 best fit is, of course, sometimes non-veridical giving rise o apparent motion, shape,

etc. If our computational model is sound, then careful study of illusions, mela-

contrast, etc., should lead to an understanding of the critical paramelers and their

possible values. This is the traditional goal of perceptual psychology: an explicit

&cl)mp_utational model permits the expression of more comprehensive and quantitative

eories.
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The essential requirement.of a computational model of vision and space is that it
be massively parallel. In addition to the obvious parallelism of the retina and early
- vision, we require simultaneous massive interaction between computalional units
within and across levels of organization of the visual system. By exploiting the

reduction of all visual features to explicit parameters we can devole an individual
% computational unit to each separate value oF each parameter and allow all these units
N to interact. Competing coalitions of such units will be the organizing principle behind

M L!A-'U'J'A"""

most of our models. Consider the two alternative readings of the Necker cube shown
in Figure 1.1. At each level of visual processing, there are mutually contradictory
units representing alternative possibilities. The dashed lines denote the boundaries of
coalitions which embody the alternative interpretations of the image. ‘The units
connected by circular-tipped arcs are assumed to inhibit one another and the others
to excite. The units in Figure 1.1 each represent a distinct entity and are thus like the
infamous "grandmother cells." Most of our constructions will employ such dedicated
* units for simplicity; my suggestions on how this relates o neural encodings are
; outlined in Section 2 and 5.

Figure 1.1: Necker Cube

The technical tools suggested for describing and analyzing computational
systems with billions of interacting units are outlined in Section 2 and are
Y prerequisite for any detailed consideration of the model. I‘or this introductory
discussion, we need only keep in mind that all of the computations within and
among the four frames are assumed 1o be continuously interacling across myriad




channels. The need for these multiple interacting computations is most clearly scen
in the Stable Feature Frame, the starting point for each of our discussions.

‘The Stable Feature Frame (SEI) takes its name from its two basic functions in
the system. The SFI is intended to be the representation of what was called the
illusion of a stable visual world. It captures, in a spatially organized bufter, the visual
information in the current field of view and is stable over fixation eye movements.
The model also suggests that this visual information is held in terms of certain
invariant (conslancy% features of the scene such as size and hue rather than in terms
of the immediately sensed values of intensily. retinal projection. elc. The SEF
contains a set of spatially registered planes, each of which continuously computes the
best value of some constancy feature for every point in the visual ficld using both
retinal input and the current values in all the other plancs. The SI'I* serves partially
as a visual buffer memory, but what is stored are features constantly undergoing
refinement. It is quite close in spirit to the Al notion of Intrinsic Images [Barrow &
Tenenbaum, 1978] as extended by the inclusion of globul parameter computations
[Ballard, 1981].

The major use of the distal visual feature information captured by the SFl-is for
indexing into models of the visual appearance which are part of one’s basic
knowledge and thus in the World Knowledge l'ormulary (WKI'). An appearance
model is assumed to be a hierarchical structure whose base elements are visual
primitives each of which can be accessed (indexed) by certain combinations of SE'H
visual features appearing in the same place. It is obviously easier (o malch an
appearance model to distal features values than to direct image measurements.
Recognition of an object or situation is modelled as a mutually remforcing coalition
of active nodes in the WKF. The relaxation of feature and model networks also
involves top-down, context, links from visual primitives to the feature units that are
appropriate. The network representation of a situation includes objects not currently
in view and has the links 'to other modalities.

In my technical sense, a situation network in the WKI' is a hierarchical structure
like a complex object with one additional property. Any WKI' situation can become
connected by situation links from the Environment I'rame (LI°) and thus become the
observer’s structure for dealing with the space around him at that moment. The
Environment Frame is modelled as a tesselation by neural units of the three-
dimensional space surrounding the observer. Its mapping to the current WKI
situation is allocentric (external) and the changing egocentric position and viewable
places are represented by changes in activation of LI’ units. Moving 10 a new
situation is captured by a discrete switch of situation links, mapping the ElI' (o a
different WKF situation network.

The final frame to be outlined here is the first one in the perceptual cycle, the
Retinal Frame (RF). The RF is intended to capture all the computational structures
which reinitialize with each eye movement. A major problein addressed in the puaper
is how separate fixations could be integrated effectively. I.ess atlention is given here
to the questions of exactly what computations are being carried out for color, texture,
motion, etc. because these computer vision questions are under extensive study in
our lab [Ballard, 1981] and elsewhere. And, of course, most of the contemporary
work in visual system physiology and psychophysics is focused on the retinal frame.

Iigure 1.2:  Tour I'rames
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The four frames model is mainly an attempt 1o provide a coherent structure for
relating the myriad findings on vision and space. In order to keep the paper of
manageable size, emphasis is placed on filling in the gaps between existing theories
and models of different aspects of vision and space. Somewhat surprisingly, I have
encountered no other contemporary effort to do this, even at a discursive level. There
are, of course, a large number of researchers whose ideas have had a marked effect
on the enterprise. Barlow’s Terrier Lecture [Barlow, 1981] stresses the use of
computational as well as physiological constraints in studying the visual system and
suggests an important role for parameter spaces. Among perceptual psychologists,
Gregory and Hochberg are closest in spirit to the current enterprise. Haber [Haber,
1982] has recently suggested a synthesis of this line of thought with Gibsonian ideas
on early vision and his treatment of low-level vision and space appears to agree with
ours.

Our approach to the problem is quite like that of Marr in placing primary
emphasis on computational adequacy while requiring consistency with biological and
behavioral findings. Much of Marr’s effort was directed towards problems al a lower
level than those addressed here. His primal sketch (augmented with motion, color
and disparity data) could serve as our retinal frame. In the areas of overlap, the two
models agree on the use of hierarchical, object-oriented descriptions and disagree on
the stable feature frame and the importance of context and visual cues other than
shape. More generally, our treatment of the SIFF and WKI-, indexing and context
appear to be the natural extension of current Computer Vision practice [Ballard &
Brown, 1982], to massively parallel hardware. There has been relatively little
computational work on space models [Kuipers, 1973: McDermott, 1980] but what
there is fits well into our "situation” treatment. We will discuss how the four-frames
mode! articulates with behavioral and biological studies in Section 5.

The first question one should ask of a model such as the current one is what
issues it claims to address. The four-frames model is most concerned with the
integration of visual information, and much less with the detailed analysis of color,
motion, etc. It purports to say things about eye movements, stability, constancies and
how these interact with general world knowledge. Another serious concern is the
representation of external space and how this relates to perception and action. All of
these considerations are addressed within a computational framework that aspires 10
be physiologically predictive. The major shortcoming of the current effort, within its
own terms, is an inadequate treatment of moving objects and observers. I’ach of the
four frames would require additional machinery to handle movement and changing
situations.

Any attempt to describe the phenomena of vision and space must deal with the
problems of interactions among the various kinds of representations and
computations. Since these interactions are clearly parallel computations in both the
channel sense and the multiple-processor sense, a technical discussion will have to
use some kind of distributed computation formalism. The particular formalism
presented in the next section is adequate to the lask and has proved useful in a
variety of related problems.

-

daia s aa saad




SO S 1l b gt oML Ao A S NN DM s T L T T S S TR TR
.,

{ G-closer cube

Figure 1.1: The Necker Cube
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2. Connectionist Models
2.1 Background

Much of the progress in the fields constituting cognitive science has been based
upon the use of concrete information processing models (IPM), alinost exclusively
patterned after conventional sequential coinputers. There are several reasons for
trying to extend IPM to cases where the computations are carried out by a massively
parallel computational engine with perhaps billions of active unils.

Animal brains do not compute like a conventional compuler. Compurulivcl'y slow
(millisecond) neural computing elements with complex. parallel connections form a
structure which is dramatically different from a high-speed, predominantly serial
machine. Much of current research in the neurosciences is concerned with tracing
out these connections and with discovering how they Lransfer information. Neurons
whose basic computational speed is a few milliseconds must be made to account for
complex behaviors which are carried out in a few hundred milliseconds [Posner,
1978]. This means that entire complex behaviors are carried out in about a hundred
time steps. Current Al and simulation programs require millions of time steps.

Various parallel computational models have been successfully used for certain
problems in machine perception for some time [Hanson & Riseman, 1978]. What has
occurred to us relatively recently is that all of these and more fit nicely into the
paradigm of widely interconnected networks of active elements like those envisioned
In connectionist models. The generalization of these ideas to the connectionist view
of brain and behavior is that all important encodings in the brain are in terms of the
relative  strengths of synaptic connections. The fundamental premise of
connectionism is that individual neurons do not transmit large amounts of symbolic
ir;[ormalion. Instead they compute by being appropriately connected 10 large numbers
of similar units. We have been engaged for some time in elucidating the properties of
CM models [Feldman & Ballard, 1982; Feldman, 1981] and their application to
particular problems in vision reseach [Ballard, 1981). This paper is the first of this
series to atlempt a general description of a major function--the perception of objects
in space. The plan is to continue to address hard problems (e.g. ambiguity in natural
language [Small, 1982)]) in technical CM terms so long as it appears to be fruitful.

2.2  Units

As part of our effort to develop a generally useful framework for connectionist
theories, we have developed a standard model of the individual unit. It will turn out
that a "unit” may be used to model anything from a small part of a neuron to the
external functionality of a major subsysiem. But the basic notion of unit is meant to
lofosely correspond to an information processing model of our current understanding
of neurons.

Our unit is rather more general than previous proposals and is intended to
capture the current understanding of the information processing capubilities of
neurons. Among the key ideas are local memory, non-homogeneous and non-linear
functions, and the notions of mutual inhibition and stable coalitions.
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N A unit is a computational entity comprising

.-
A‘j {q} -- a set id discrete states, < 10 )
- p -- a continuous value in [-10,10], called potential (accuracy of several digits) ]
- v -- an output value, integers 0 < v < 9 : :
t 1 - a vector of inputs ij,...i, :
h and functions from old to new values of these :
. )
p € vaP,Q) ;

q « g(i,p.q)
v « h(i,p.9).

oy .l .i ".‘

! The form of the f,g, and h functions will vary, but will generally be restricted
» conditionals and simple functions. Most often, the potential and output of a unit wi
- be encoding its confidence, and we will sometimes use this term. The " «" notation 1

borrowed from the assignment statement of programming languages. This notatio
2 covers both continuous and discrete time formulations and allows us to talk abot
. some issues without any explicit mention of time.

|
J

The restriction that output take on small integer values is central to our
enterprise. The firing frequencies of neurons range from a few lo a few hundred
impulses per second. In the 1/10 second needed for the basic mental events, there
can only be a limited amount of information encoded in frequencies. The ten output
values are an attempt to capture this idea.

The inclusion of a discrete set {q} of different states has both biological and
computational advantages. It allows the system to accommodate models of fatigue.
peptide modulators and other qualitative state changes. Computationally it permils
the use of analysis and proof techniques from computer science.

For some applications, we will be able to use a particularly simple kind of unit
(p-unit) whose output v is proportional to its potential p (rounded) when p > 0 uand
which has only one state. In other words

P € p+ B Ewiy ' [0
v ¢ if v > 0 then round (p - 0) else 0 [v

wi < 1]
0..9]

InIA

where g, 6 are constants and w) are weights on the input values. The weights are the

sole locus of change with experience in the current model. The p-unit is somewhal
like classical linear threshold elements (Perceptrons [Minsky and Papert, 1972)), but
there are several differences. The potential, p, is a crude form of memory and is an
abstraction of the instantaneous membrane potential that characlerizes neurons: it
greatly reduces the noise sensitivity of our networks.

TS\ VI PIVLINIIIRYY | -JUNREN

IVRVSEY Wl SP PP

A problem with the definition above of a p-unit is that its potential does not
decay In the absence of input. This decay is both a physical property of neurons and
an important computational feature for our highly parallel models. One
computational trick to solve this is to have an inhibitory connection from the unit
back to itself. Informally, we identify the negative self feedback with an exponential
2 decay in potential which is mathematically equivalent. With this addition. p units can
be used for many CM tasks of intermediate difficulty. The Interactive Activation
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models of [McClelland & Rumelhart, 1982] can be descnibed naturally with p units,
and some of our own work [Ballard, 1981] and that of others [Marr & Poggio, 1970}
can be done with p-units. But there are a number of additional features which we
have found valuable in more complex modeling tasks [Feldman & Ballard, 1982).

It is both computationally efficient and biologically realistic to allow a unit to
respond to one of a number of alternative conditions. In terms of our formahsm, this
could be described in a variety of ways. One of the simplest is to deline the polenlial
in terms of the maximum of the separale computations, e.g.,

p €p + ﬂMaX(i1+12‘(p, i3+i4'q>, i5+'l()*'l7'(p)

where g is a scale constant as in the p-unit and ¢ is a constant chosen (usually >
10) to suppress noise and require the presence of multiple active inputs [Sabbah,
1981].The max-of-sum unit 1s the continuous analog of a logical OR of-AND
(disjunctive normal form) unit and we will sometimes use the latler as an
approximate version of the former. The OR-of-AND unit corresponding to the
definition above is:

P e p + a OR (i1& is&iy is&ig&(nol i7)

Most of the constructions in later sections will employ these “corjunctive
connection” units.

2.3 Networks of Units

A very general problem that arises in any distributed computing situation is how
1o get the entire system to make a decision zor perform a coherent action, etc.). One
way to deal with the issue of coherent decisions in a connectionist framework is (o
introduce winner-take-all (WTA) networks, which have the property that only the
unit with the highest potential (among a set of contenders) will have output above
zero after some settling time (Fig. 2.1). There are a number of ways o construct
WTA networks from the units described above, and severa! of these have been
disccussed in [Feldman & Ballard, 1982] and elsewhere. 'or our purposes it is
enough to consider one example of a WTA network which will operale in one time
step for a set of contenders each of whom can read the potential of all of the others.
Each unit in the network computes its new potential according to the rule:

p ¢« if p > max(i;, .1) then p else 0.
Figure 2.1: Winner-Take-All network.

A problem with previous neural modeling attempts is that the circuits proposed
were often unnaturally delicate (unstable). Small changes in parameler values would
cause the networks to oscillate or converge to incorrect answers. What appears o be
required are some building blocks and combination rules that preserve the desired
properties. For example, the WTA subnetworks of the last example will not oscillate
in the absence of oscillating inputs. This is also true of any symmetric mutually
inhibitory subnetwork.

Another useful principle is the employment of lower-hound and upper-bound
cells 1o keep the total activity of a network within bounds. Suppose that we add two
extra units, I.LB and UB, to a network which has coordinated output. The 1.B cell
compares the total (sum) activity of the units of the network with a lower bound and
sends positive activation uniformly to all members if the sum is too low. The UR cell
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inhibits all units equally if the sum of acuvity 1s 100 high. Under a wide range of
conditions (but not all), the LB-UB augmented network can be designed 1o preserve
order relationships among the outputs v; of the originul network while keeping the

sum between LB and UB. We will often assume that I.B-UB pairs are nsed 1o keep
the sum of outputs from a network within a given r;m%c. This same mechanism also
goes far towards eliminating the twin perils of unitorm saturation and uniform
silence which can easily arise in mutual inhibition networks. Thus we will often be
able to reason about the computation of a network assuming that it stays active and
bounded.

For a massively parallel system such as the ones we are envisioning to make a
decision (or do something), there will have to be states in which some activity
strongly dominates. One example of this is the WTA network. But the gencral wdea is
that a very large complex subsystem must stabilize. e.g. lo a fixed interpretation of
visual input. The way we believe this to happen is through mutually reinforcing
coalitions which dominate all rival activity for a period of time. I'ormally, a coalition
will be called stable when the output of all of its members is non-decreasing. Notice
that a coalition is not a particular anatomical structure, but a temporarily mutuall
reinforcing set of units, in the spirit of Hebb's cell assemblies [Jusczyk, 198(){

The mathematical analysis of CM networks and stable coalitions continues 1o be
a problem of interest. We have achieved some understanding of special cases
[Feldman & Ballard, 1982] and these results have been useful in designing CM (00
complex to analyze in closed form [Sabbah, 1981].

By combining the ideas of conjunctive connections. WTA and stable coalitions.
we can developnetworks of considerable power and flexibility. Consider the example
of the relation between depth, physical size, and retinal size of a circle. (Assuine that
the circle is centered on and orthogonal to the line of sight, that the focus is fixed,
etc.) Then there is a fixed relatior between the size of retinal image and the size of
the physical circle for any given depth. That is, each depth specifies a mapping from
retinal to physical size (see Fig. 2.2).

Figure 2.2: Relations among depth, retinal size. and physical size.

Here we suppose the scales for depth and the two sizes are chosen so that unit
depth means the same numerical size. If we knew the depth of the object (by touch,
context, or magic) we would know its physical size. For example. physical size = 4
and depth = 1 make a conjunctive connection with retinal size = 4. Fach of the
variables may also form a separate WTA netowrk: hence rivalry for different depth
values can be settled via inhibitory connections in the depth network. Notice that this
network implements a function phys = f{ret.dep) that maps from retinal size and
depth to physical size, providing an example of how to replace functions with
parameters. For the simple case of looking at one object perpendicular o the line of
sight, there will be one consistent coalition of units which will be stable. The network
does something more; the network can represent the consistency relation R among
the three quantities: depth, retinal size, and physical size. It embodies not only the
function f, but its two inverse functions as well (dep = fy(ret.phys). and ret =

fy(phys,dep)). Much of the vision work in our lab [Ballard, 1981]) and elsewhere

[Hanson & Riseman, 1978] relies on the interaction among constraint networks like
those of Figure 2.2.
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The stable coalition mechanism also has implications for the "grandmother cell”
issue. Even the 3-unit loop capturing a siz¢ ‘epth relationship could be viewed as a
"pattern of activity” of the three units. More generally, in any CM network, there
will always be many active units forming one or more coalitions. This does nol mean
that one can_ usefully characterize the network in terns of diffuse system states
instead of units with particular functions. On the other hand. a unit will participate
in several coalitions and need not have a simple response patlern. There are both
biological and computational advantages to employing the simultaneous activity of
multiple units to code some information of interest. l

. For_example, suppose we wanted to represent 10 values each of ten low level 1
visual features such as position, orientation, hue. contrast, motion, elc. Having a

separate unit for each vector of values would require 1010 units which is clearly too
many. Suppose instead we had units which were precise in only one dimension. Then
we would need only 10 x 10 units but it would take the simultaneous activity of ten
units to specify a full vector of values. There are a range of intermediate
constructions [Hinton, 1981; Feldman & Ballard. 1982). One of these techniques
(coarse-fine tuning) appears close to the coding used in primary visual corlex, where
units are broadly tuned in several dimensions and fine-tuned in one stimulus
dimension. Consideration of the particular coding techniques employed by the brain
will be deferred until Section S and we will use whatever coding seems easicst 10
understand in earlier sections.

2.4 Memory and Change

In the previous section, we saw how fixed CM networks could be designed (o
compute functions and relations quite efficiently. These fixed networks could have a
certain amount of built-in flexibility by explicitly incorporating parameters. One can
view the depth networks of FFigure 2.2 ‘as computing the physical size of objects from
the retinal size, parameterized by depth.

But there are also a number of situations where it does not seem plausible (o
assume the existence of either fixed or parameterized links. An obvious, though
artificial, set of examples are the paired-associate tasks with nonsense syllables used
by psychologists. A closely related real task is learning someone’s name or the
Hebrew word for apple. One cannot assume that all the required connections are
Fre-established, and it is known that they do not grow rapidly enough (in fact, very
ittle at all) [Cotman, 1978]. What does seem plausible is that there is a built-in
network, something like a telephone switching network, which can be configured to
capture the required link between two units. We refer 1o this as establishing a
"dynamic connection” in the uniform network. We are assuming (as is commonly
done) that the weight of synaptic connections cannot change rapidly enough to do
this, so that all dynamic connections are based on changes in the potential (p) and
state (q) of individual units. The other basic constraints that we impose on possible
solutions are that units broadcast their outputs and that there is no central controller
available to set up the dynamic connections. These assumptions differ from those in 1
the swilching literature, and the results there don'l carry over in any obvious way.
The assumption is that only one dynamic connection is made at a time, but that
several (e.g. 7 + 2) must be sustainable without cross talk.
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The example task we will be considering is to make arbitrary dynuamic
connections belween (wo sets of units labelled A. . Z and a. . .7 respectively, These
could be words in different languages, paired associates. words and images, and so
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on. Figure 2.3 depicts the situation for three units on each side.

The problem is how to establish, for example, the link B-c without also linking,
e.g. B-b, since the network is originally uniform. More J)recis.ely, we require an
algorithm which, given the simultaneous activation of B and ¢, will establish p a"d-(i
values in the units of our network such that (for some time) activating BB wil
stimulate ¢ but not a or b. For the most part we will consider symmetric networks
where the "dynamic connection” B-c¢ will also have the activation of ¢ stimulate B
and not A or C. It should be clear that primitive units without any internal state
(memory) will not be usable in such tasks.

The basic solution to the dynamic link problem in CM networks relies upon
mutual inhibition between the alternative inter-units. I‘or notational convenience, we
will sometimes represent this situation as an array of units, with the understanding
that the array is a winner-take-all (WTA) network. If the only active link were B-c,
then only the three starred units would be active.

Figure 2.3: Uniform dynamic link network.

The idea here is that there is a separate intermediate unit dedicated to each
possible pairing. The starred unit for B-c is in two WTA networks, the column which
1s "inputs to ¢", and the "outputs from B" WTA net which is drawn in explicitly.
When B-c is active, it blocks all others uses of both B and ¢, which is the desired

effect. The fact that our solution requires N2 intermediate nodes to connect 2N units

makes it im;lzractical for linking up sets of 10° units like an educated person’s
vocabulary. There are, however, more complex interconneclion networks which

require about 4N3/2 ynits [Feldman, 1981). This paper also gives delailed
descriptions of the unit computations required and some examples.

2.5 Random Interconnection Networks

There are both anatomical [Buser, 1978] and computational reasons for looking
carefully at random interconnection schemes. We will first consider the possibility of
using random interconnection networks (in place of the uniform networks above) to
dynamically connect arbitrary pairs of units from two distinct layers. As before, each
unit is postulated to have links to some large number of intermediate units, whose
role is strictly a linking one. In any random connection scheme there will be some
finite probability that the required path is simply not present. The remarkable fact is
that this failure probability can be made vanishingly small for networks of quite
moderate size [Feldman, 1981). The idea is to have k (two or more) layers of

intermediate units so that there is a tree of B! links across the network, where B
is the outgoing number of branches from each unit. This result has been known for
some time and has been used as the basis of a proposed highly parallel computer
[Fahlman, 1980).

It is premature to speculate on the degree lo which animals are more like the
uniform or random networks (if either) but we can say something about lhe
computational advantages of each. Uniform networks appear to be most useful for
maintaining many simultaneous dynamic links which are easily turned on and off.
They could only be expected to occur in well-structured stable domains because of
the strong consistency requirements. In general, we would like 1o view uniform
dynamic links as a mechanism roughly equivalent to modifiable or conjunctive
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connections where the number of possibilities is too great to wire up directly.

Random interconnection networks are not as stable and prediclable as uniform
ones, but have some other advantages. The lower requirements on the number and
precision of wiring of intermediate units are clearly important. But the most
Interesting property of the random networks is the relative ease with which they
could be made permanent. Suppose that instead of ragid change we wanled
relatively long term linkage of units from the two layers. Our model specifies that
this must be done by changing connection weights Wj. The point 1o be made here is

that the random networks already have some unils biased towards linking any
articular pair from the two layers. By selectively strenghthening the active Inpults
on command) of the most appropriate units, the network can relatively quickly forge
a reliable link between the pair. The details of how we propose that this comes about
are given in [Feldman, 1981% and summarizxed in Section 2.5. Of course, one this has
happened, the network will not be able to represent compeling dynamic links, but its
ability to capture new pairings will remain intact until a large fraction of the nodes
are used up (cf. [Fahlman, 1980]).

The fact that random (as opposed to uniform) interconnection networks could be
readily specialized suggests that random networks may play an important role in
permanent change and memory. After enough training, the originally random inter-
connection network would become one in which there was essentially a hard-wired
connection between particular pairs of units from the two spaces.

The problem with this scheme as a proto-model of long term memory is that
most of our knowledge is structured much more richly than paired associates. It is
technically true that one can reduce any relational structure to one involving only
pairings, and Fahlman [1980] suggests that the best current hardware approach is
along these lines. But the intuitive, psychological and physiological [Wickelgren,
1979] notions of conceptual structures involve the direct use of more complex
connection patterns. It turns out that the results of the previous section on random
interconnection layers extend nicely to the more general case.

The basic situation is shown in Figure 2.4. There are again N (= 16) units
connected to v N others, but without any layer structure. We are assuming that all
units and connections are identical and that each unit has, at each lime step

vV €« 2p
P €p + Zi-2(= decay when p = 0).

We suppose that at each time step the unit subtracts 2 from its current potential if i
not zero, and then adds the sum of its input values. The table in I'igure 2.4 shows
successive values of p for various units, assuming that at T = 0, units [ and | have p
= 10 and are maintained for six time steps. The unit O happens (o be directly 1
connected to F and | and thus will eventually saturate (under the rules above). !

Figure 2.4; Random chunking network.

After step 5, the coalition (F,0,]) is self-sustaining and would actually need to be
stopped by fatigue or an external input. In some sense, we can view this coalilion as ]
having recruited unit O to maintain the dynamic link between I* and 1. The main i
differences from the examples given earlier is that here the linking can lake place )
between any set of units and there is no distinction between end and intermediate ]

)
*
1
{




iy R e s s Pliieaiun i diin e T

]
units. This is a simple example of the basic mechanisin which we believe 1o suppoil ;
associative learning and appears 1o be close 1o what Wickelgren [1979] had i mind. 1
L If random chunking networks can be made to support shorllerm assoctalions ;
! through coalitions, the usual weight-changing algorithms would enable the |
associations to be made permanent. ]
1 2.6 Changing Weights and Long-Term Memory ]

¥ There was a brief discussion of changing weights carlier where it was suggested
that random networks could easily be made to incorporate long-term change. We will
examine this problem more carefully in this section. still within the constraint that all
long-term change is caused by structural modification of connection weights. w;.
There is some evidence for the growth of new connections in adulls [llmscr. 10781.
and for relatively rapid physiological change at synapses [Kandel, 1976]. bul neither
F’ seems to be nearly widespread or selective enough lo play a dominant role in the
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acquisition of knowledge. The discussion in this section will be mainly technical,
dealing with rules for changing weights, their properties, and some basic problems.

ittt e B hack

The standard basis of weight-changing algorithms [Sution & Barto. 1981; Juscryk
& Klein, 1980] is reinforcement of those weights (Wj) whose inpuls (ij) correlate with ]

desired outputs. This is almost trivially correct, but is subject to a wide range of
interpretations, some of which won’t work. One widely used rule is to always
reinforce those w; for which i; was active whenever the unit fires (rapidly). This 1s the

rule originally proposed by Hebb [Jusczyk & Klein, 1980] and has been the basis for
many studies of plasticity. However, this feedback-free reinforcement rule provides
no way for a system to learn from its mistakes and could not be the only rule used in
nature.

YT

wwer W

Our definition of weight changing in the abstract units depends on a
hypothesized ability for a unit to "remember” the activity state of ils incoming
connections for long enough to get feedback. This assumption is commonly made by
modelers (e.g., see fSullon & Barto, 1981]), and has some currency among
neurobiologists (e.g., [Stent, 1973]). The idea 1s that the activily al a receiving site
causes chemical changes that persist and remain localized for some lime.

atbiadiodbeadil il ainnl,

The change in weights will be determined by a function of the inpuls (i).
potential (p). state (q), and outcome value (x) for each unil. The general case \
includes a provision for dealing with situations where it is not possible lo decide 4
immediately whether a given network behavior should be reinforced. We introduce a *
"memory" vector u and two functions, ¢ which updates . and d. which (usually :
later) uses values of g to bring about changes in the weights w. The general .
definitions are given in [IFeldman, 1981]. This paper will not deal with deferred
outcomes, so that we can use a simplified definition with 4 = wuand ¢ = d. The rule
for weight change becomes

FRG W oW LI P

w ¢ d(i,pq.xw).

As an example, let us consider augmenting the random nctwork of Iigure 2410
enable it to selectively strengthen connections. We will assume that all of the wj in

the network are initially set to .5. The table in Figure 2.4 is still applicable if we

assume that all units have output v = 4p (instead of 2p). because the mitial weights
of .5 will even things out. We will also have to be more precise in our treatment of
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bidirectional links. We interpret Figure 2.4 to mean that, for example, unit O has
inputs from and (separately) outputs to units I, I, I, and ?. Recruiting units (O, 1, I)
to form a more permanent chunk would be accomplished by strengthening their
mutual positive effects.

The dynamic link established in I'igure 2.4 provides the information necessary
for a uniform updating algorithm to choose the right weights to change. Ior
example, the system could signal updating weights at time 5 for all units with p > 8.
The next thing that needs specifying is a particular updating rule. The next thing that
needs specifying is a particular updating rule. A typical updale rule might be

AWj:a'ij

which increases weights at a rate proportional to the current input level. A well
known problem with this rule is that if weights only increase they will often all
saturate. One standard solution (e.g., [Sutton & Barlo, 1981]), which works well
enough in this case, is to have an increase or decrease in weights which-depends on
the output or potential of the unit. We could do this discretely by selling a
conditional § = 1ifp > 8 and & = -1if p ¢ 8. A continuous version could be & =
p - 8, which would greatly penalize active Tnputs to dormant units. In either case,

ij:a~ij-5

is an acceplable updating rule. Assuming that the fourth input of unit O is idle, the

new values of weights on inputs to unit O would be (a = .1):
1 F L. 7
old S S S
continuous 6 .6 .56 ‘
discrete .55 55 53

Notice that the weight on the mystery input remains unchanged because Iy is

zero. This might not be desirable if the goal were to cut off other inputs that might
cause confusion with the chunk (O, I, F). In general, different structures will be
better served by different updating algorithms and one should not expect to find a
- uniform scheme that will be applicable in all situations. Our ajor departure from
the literature is to allow non-linear updating rules that need not treat all w; on a

given unit identically. This is a natural extension of the more flexible computational
rules we have found useful in our detailed models. Many of the results [Sutton &
Barto, 1981] on the convergence and stability of correlation weight changing schemes
will carry over to rules of our kind. More details on this and related questions can be
found in [Feldman, 1981).
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Figure 2.1: Winner-Take-A11 network. Each unit
stops if it sees a higher value.

11
4

depth

re:}ggl { w“ Physica]
untts ’ ‘% f it

units )
YOS < )
"
Figure 2.2: Relations among depth, retinal size, and :
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Figure 2.3: Uniform Dynamic Link Network
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3. Small World

One problem in trying to think coherently about vision and space is the
enormous number of entities involved at every level. In this section we will present a
fairly detailed examination of the interactions among the four frames, but all done al
a very coarse grain. The small world developinent has been crucial to the cluboration
of the current model and will hopefully also be easier for others to work with. Again,
we will push through a straight line of development that ignores many important
issues and then try to address all the major ones (in Section 4). This section and the
next one still contain no behavioral or physiological support for the choices buing
made - the concern is strictly with the computational adequacy of the model. Only
after the model is specified will we address its relationships with past and tuture
experiments (Section 5).

Our discussion begins with the problem of linking visual teature mtormation
with the knowledge of how objects in the world can appear. The problem of going
from a set of visual features 1o the description of a situation will be called the
indexing problem, following the terminology common in AL The small world we will
consider in detail has exactly six distinct visual features each with 10 possible values
(Figure 3.1). Assume for now that any object in the small world can be charactenzed
by some particular set of values for the six features. This would mean that cach
object has a distinct 6-digit visual code (not unlike a sip code). If the system could
always reliably extract the values for the visual features, it would not be hard to
identify which objects were in which places in the currenl envirommnent. No

additional problems would arise if some objects had multiple codes among the 100
= 1,000,000 available. But the system. as specified. would totally break down if two
objects needed to share the same code, i.e. looked identical retative to our set of
lfeatures and values. We will have to address the question of ambiguous feature sets
ater.

The six particular visual features which we have chosen are inlended to
elucidate the major scientific problems in intermediate level vision and would not be
the best choice for a practical computer vision system. We assume for now that the
best value at each position of the current view is continuously maintained by
parameter network computations [Ballard, 1981] which will be elaborated below.
Features such as size and shape which cover several units are assumed to be
represented by a single unit, say at the center of the region covered. Of course, the
problem of breaking up the feature space into meaningful regions is a central one
and the model will have 10 address it in detail.

One of the features which we employ in the small world is called "motion.”
Motion, as well as the other features, will be treated in this section as a property of
objects which has ten discrete values and is continuously updated by computational
processes which will be specified later. Motion and change are clearly critical
problems and require much more careful treatment than an arbitrary assighment of
ten values. But there is «n important conceptual advantage lo including motion as an
explicit parameter even ct this early stage. If computing the best discrete valued
characterization of object motion is a basic property of low-level vision, then there is
nothing at all surprising about the various perceived motion phenomena. Mote
generally, the notion that low-level vision is concerned with continuously
maintaining the best current discrete value choices for specific visual features
provides a pcwerful organizing principle for helping o explain a wide range of
findings in perceptual psychology. We will consider some of these issues in Section S,
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after the small world model has been worked out in detail.

‘T"he model specitied so far has almost no content. bul several im‘[mrmm points
can already be seen. The most important point is that discrete values for a fixed set
of visual features provide a natural base for indexing, and all of our models will
assume this structure. The second point is that the visual teatures chosen will
determine which distinctions the sytem is capable of, as is already well known in
classical pattern recognition. An obvious consequence is that the features used tor
indexing should be as invariant as possible under different viewing conditions. This
suggests that we should use the "constancy” properties like reflectance, physical size
and surface curvature rather than proximal or image features for indexing.

The six visual features used in indexing are the following: hghiness, hue,
texture, shape, motion, and size. Obviously enough. ten values of these features (even
in logarithmic scales) is not enough to characterize visual appearance v the real
world; but the small world is rich enough to exhibit most of the required problems.
The model assumes that the six features are continously represented i six parallel 10
x 10 arrays which are intended to map the currently visible external world. There is
also assumed 1o be a (10 valued logarthmic) depth map maintained as part of the
same structure (Iig. 3.1). The depth map is needed for calculating constancy features
such as object size and is also used directly in mapping the environment. The depth
map is assumed to be calculated cooperatively with the six feature planes, using
binocular and other cues. These seven parallel arrays. along with some auxiliary
structure, comprise the stable feature frame (Sl-‘l-‘{ which 15 one of the four
cornerstones of the model.

Figure 3.1; The six feature (and depth) planes for the Small World St

The SI'I° takes its name from its two main properties: 1t encodes visual feature
values and it is stable over fixations. The SEI- is the basic interface between the visual
system and the more general world knowledge represented in the World Knowledge
Formulary (WKF). The idea is that the SEI- at all times maintains a map of the
visual properties of the part of the world that is currently in view. We will describe
below in some detail how the SI'lI° interacts with the retinal frame (RI7) in
maintaining a stable visual world. Assuming that the SE'F is successtully maintained,
we now address the problem of how its feature values can be employed to capture
knowledge of the objects in the current environment (and their activities). Thus we
return to the indexing problem.

Our first view of appearance models was that cach object could be
characterized by one or more sels of feature values. I'or objects that are sufticiently
simple, this is not a bad approximation. You can probably name an object that is an
approximately 1.5" white sphere and which is uniformly pock marked even before
seeing it hook into the rough. But for complex objects like a horse or arvard
S?uare, the single feature set 1sn’t even the right kind of visual information. Our way
of handling the appearance models for complex objects and situations is. again, tuken
directly from current Al practice. We assume that the appearance of a complex
object is represented (as part of one’s world knowledge) as a network of nodes
representing the "appearance possibilities” of simpler components and relationships
among them. Figure 3.2 shows the description of a chair scene from [Ballard &
Brown, 1982] which is typical. There are several unsolved technical questions about
the number of separale views maintained. and how much fexibibty should be
encoded in a description. but the general idea of composition is all we need at the
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moment.

Figure 3.2: A typical network representation of visual objects 1 a situation
[Ballard and Brown 1982]

Recall that the naive version of indexing was 10 use the 6 digit visual feature
code to look up the name of the object with that description. Complex objects are
assumed to be composed of parts, each part being either another complex object or a
visual primitive that can be indexed by the 6-digit code. Now recall that all of our
structures are assumed to be parallel and continuously active. This means that
"indexing" can be continuously in progress between different arcas of the SEL and
networks of visual appearance knowledge in the WKL The crude version ot this wdea
is to assume that each set of visual features (for a point in the 10 x 10 SIl map)
picks out (indexes) the visual primitive which is appropriate. If this were to happen,
it is not hard to see that a visible complex object would ha e many of its visual
primitive parts selected simultaneously and should theretore be i=cognizable. Paraliel
indexing from the entire visual field without confusion 15 too much to expect.

In order to make these notions more precise and eliminate the ghosts trom
our machine, we must describe all of this in considerably more detanl, using the
technical definitions of Section 2. ‘The various components of both the SI'I* and
WKF will be elaborated in terms of the "units" of Section 2. Obviously enough, we
will need separate units for each of the 100 spatial positions in each of the seven
separate maps. In fact, it is also important to follow the unit/value principle and
require a separate unit for each value of each cell in the maps above, giving a total of
70%0 units. Following the connectionist dogma, we asstume that visual primitives are
units which are connected to the appropnate set of visual-feature-value units. or
example, Figure 3.3 shows how golf and ping pong ball descriptions in the WKFE
might be connected (indexed) by visual features. It is easy to see how o make
connections do the same job as the index codes. Lach code for a visual prunitive s
assumed to be encoded as a conjunction of links from units representing the
appropriate value of each feature. A visual primitive with multiple codes has several
disjunctive "dendrites,” one for each code. Visual primitives that are part of a
complex object are also linked into a network for representing the appearance of the
object [Figure 3.4].

Figure 3.3. Ping-pong and golf balls

Figure 3.4: Harvard Square situation network '
Rectangles are situations, squares are (complex) objects

‘The general notion of representing a complex object as a network or graph ot
nodes is standard in machine perception and will be followed here. In the small
world we will assume that a node corresponds to one visual primitive (sct of feature
values) and is represented by a single unit as in Section 2. The links between nodes
are assumed 1o be conceptually labelled as in Iiigure 3.2. The encoding of labelled
links into CM connections will vary. but will mainly be through conjunclive
connections involving separate units which embody the link name.

An important aspect of the small world model is that complex obyects and
situations have the identical representation as semantic networks in the WKI hut
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may include several complex objects and relations among them. A sutuation is for us - S

any oriented WKF network which can be mapped to the environmental frame to :

guide behavior [cf Section 4.2). The question onhether a given network should be ,‘;

viewed as a situation description is not fixed in advance, but is deterinined by the g}

way that the description is being used. Intuitively, it seems reasonable enough that a g

room or Harvard Square can be treated either as a situation or as an object viewed ]

. from some distance and that the same relational knowledge could be employed in 1

- each use. Both object and situation descriptions allo« for nested sub-descriptions and ]
" both can accommodate some stylized movement as will be discussed later. .‘;

The question of when a network description is playing the role of a situation 3
is quite sharply defined in our model. We assume that at any given time there is
exactly one currently active situation description and that it represents the }
environmental situation at that time. 1.oosely speaking, the model assumes that there .
are situation descriptions for places, routes, etc. and that these are linked in the WKI- i
as a "patchwork cognitive map” [Kuipers, 1973]. The technical questions 1o be

< addressed here are how these situation descriptions interact with early vision (S1°1°) )
- and with the (modality-independent) frame which encodes knowledge of the space _:
- around us at any time. [t is this environmental frame (1:I") which is the fourth pillar /]

. of our framework; the others being general world knowledge (WKI?. features of the
. stable visual scene (SFF) and the instantaneous retinal information (RT). Again, it is
crucial 1o think of all of these frames as continuously active and interacting with one

another,

The environmental frame in the small world is again unrealistically rectilinear.
We assume that the world around us is always represented as a box-like three-
dimensional spatial map, as shown in IFigure 3.5. The nodes of the Lil* each represent
a position in the space surrounding the observer, and the activation of these nodes
varies with the direction of gaze. There is a mapping to nodes in the currently active
situation (in the WKF) from appropriate units in the environmental frame. Fvery
node in the currently active situation will get some potentiation just from being part
of the active situation. Additionally if one of these nodes is mapped to a posilion in
space that is currently being gazed upon, it will receive much more potentiating
input and can be said to be "anticipated.” Recall that in our discussion of ambiguous '1
visual input we said that mechanisms like this would lead to one interpretation being
preferred over another depending on the situation.

\ Figure 3.5: Two EF units of different scales activate different objects in SI'T
” 435 = Harvard Square

e B ot aatalal

_ The model includes three levels of top-down inpul 1o nodes representing
visual objects in the WKIF: current situation, visible, and foveated. We will describe
the proposed representation for situations and the Ll in more detail and worry only
later about how one might come to learn the networks for situations (and objects).
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~ Our model of the environmental frame includes a subnetwork tor -
- continuously updating the position and orientation of the observer within his .
environment. This is clearly necessary for computing which parts of the environment g
R are visible and foveated. The same information is assumed o be used in the GAZL
' mapping linking the retinal and SI'I- frames. Although il is not so obvious. the ego
position within the frame also can provide scale information, allowing us to
anticipate more precisely what should be visible from a given view poinl in the
environment. This scale information combines nicely with the hierarchical nature of
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the visual descriptions suggesled for the WKI'. As the observer approaches some

object, different levels of substructure become visible and the operation of the
current model incorporates this in a natural way. The relative position of objects 10
the current egocentric position is also assumed to be the busis for physical actions on
objects. The model suggests that the SFFI:-WKI1-system is crude and that visual or
other sensory guidance is needed for accurate location of objects.

I'or concreteness, we assume that the (fixed) environment frame has four
directions (N,E,S,W); we will not include objects above or below the observer for
now. Starting from the center of the map. there are four (logarithmic) distances in
each direction. For things at distance one, the observer can resolve 10 x 10 spatial
postions. At distance two, the resolution is 5 x 5. At distance 3 it 1s 2 x 2 and at
distance 4 only one unit is active or not, The situations are encoded in a compatible
way. Each object description in a situation network has a scale at which it could be
" visible, if gazed upon.

As the observer moves, the visible scale and postion values are continuously
updated. There is no apparent difficulty in also computing occlusion information,
either generally through the EI or specifically in the situation description. We
assume that situations become mapped as the active current environment, based on
how the observer has organized his situation memory. Some general cues as to when
situations wouid change include: going through a door, changing to a different scale
of consideration or switching from planning to acting. The technical question is
exactly how the environmental frame interacis with the current situation network,
The major difficulty is providing for the mapping of a great nutnber of possible
situations onto the single fixed environmental fpramc. Notice that any CM model will
face the problem of coupling distrututed knowledge to fixed inpul and outpul
systems - the scientific questions are wiiere and how 1o carry out this coupling. The
keys to our solution to the situation - Ll mapping problems are: suuation nodes,
conjunctive connections and directly encoding only the inverse mapping. We assume
that the environmental frame consists (inter alia) of units that each represent a region
of the currently surrounding space. Fach of these units will conjunctively connect (o
all of the objects which might be visible in its region of space in some sitnation. Not
surprisingly, the other half of the conjunctive connection comes from a unit which is
active exactly for one particular situation. I'igure 3.5 depicts the general situation, If
the current situation is "Harvard Square” = S5S463 then all of the objects in that
situation will be receiving some aclivation. This means that there will be some
greater than usual expectation that these objects will be chosen over their rivals n
non-visual as well as visual computations. When gaze is of a direction and scale
appropriate for some object, its node (in the WKI- network) will be more strongly
activated because the corresponding position in the I'l* will be active and this plus
the currency of S463 will cause high activation of e.g. ""The Coop” and "Brighams".
This provides top-down bias to the relaxation between the WKI° and the visual
features of the SFF, the details of which will be given later. Iinally, if a particular
known object (say the door of the Coop) is foveated. there will be even stronger top
down bias through the WKI' 1o both the SI'I' and Retinal computations.

‘The advantages accruing to a visual system with toveation are the focus of our
description of the firsi basic component of the model - the retinal (RI") frame. iven
before we fill in the details we can see that there are several reasons why foveating an
object of interest leads to better recognition:

a) Certain complex calculations (e.g. color, texture) can only be done foveally.
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b) Bottom-up indexing of features to visual primitives can be restricted 10 the
area of the SFF being foveated (by spatial focus unils), greatly reducing the
possible confusions.

¢) In a known environment, top-down activation from the conjunction of
situation and gaze information can significantly raise the activation of an
expected object or primitive,

All three of these advantages mutually reinforce one another, leading to an
overwhelming advantage for foveal vision in the model. I'he role of peripheral vision
is to set and maintain contexts and 1o continuously monitor for change. as we will see
as the elaboration of the model continues,

The retinal frame (RI°) is primarily concerned with bringing the enormous
spatial resolution and processing power of the fovea and its maps to bear on points
of interest. The RI is assumed to calculate the values of disparity. retinal motion,
intensity change, etc. which are the primary inputs to the SIl'. The current mode!
assumes that there are local grouping and smoothing processes active within cach
feature network, but that interactions among features are carried oul in the SEl-.

In keeping with the rest of the development we will describe a spedilic
incarnation of the retinal frame which is much too small and rectilinear, but should
be easier to understand. Our retinal frame will have 100 spatially organized units,
like the feature frame (SFF), but they will be laid out very differently. In the RI-, 64
of the 100 spatial units will be uniformly packed into an area equivalent 1o a 2 x 2
array of the SFI. The remaining 36 units will be formed into three surrounding rings
of logarithmically decreasing resolution. In terms of SI'I' units, the units in the oulter
rings of the retinal frame will cover 1. 4, and 16 squares respectively. Al of this is
depicted in Figure 3.6.

IFigure 3.6: logarithmic Retinal Frame

We assume that the retinal frame can (logically) move with respect o the
SFF. The center of the RI' can "move” (o any position in the SI'l" except the (wo
outer most rings. Under these conditions, the entire SEl° is covered by the R} at all
times. Naturally, the parts of the SFI' mapped by the coarse units of the R1" get only
coarse information while the fovea is mapped elsewhere. I‘igure 3.7 depicts the
situation where the fovea is mapped to the upper left extreme of its range, leaving
most of the SFF covered by 2 x 2 and 4 x 4 retinal units.

. First, a technical point. The relative motion of the Rl must be implemented
1n our scheme by a switchable conjunctive mapping. We assume thal each R unit is
linked appropriately with every combination of SI'F units to which it could map.
Every such RF-SFF link is conjoined with a connection that specifies the currcnl[;
acive GAZE mapping. F'or example, in Fiigure 3.7, the top-left corner unit of the

RFF arrays will be mapped to the unit just beyond the fovea which is the top lefl of

its ring. The mappings for units other than those in this ring are not 1 1o 1: this will
tf)re important as we consider the interactions of the retinal (R1Y) and teature (SF1Y)
ames.

Figure 3.7: Retinal lI'rame mapped to SIIY
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In the current model, there is no top-down feedback from SEL to Ri- units.
Any tuning of the retinal frame is assumed 10 be captured in the mechanisin for
GAZE control. The flow of information in the other direction 1s, of course, the basic
problem of low-level visual processing. The model postulates a distinct fovea und
periphery in the retinal frame and assigns quite ditferent functions to them. The
fovea (8 x 8 in our case) is assumed 1o have enough resolution to determine which of
the discrete (10 in our case) values of the stimulus features are present in the area
foveated. The SFI° is assumed to be able to integrate and retain information about
hue, texture, shape but not to do the direct computation of the feature values. The
main purpose olplhe SEI- is incorporating and maintaining information about the
entire visible scene that is only computable foveally. The SI't' does not simply
transcribe retinal input; the seven planes interacl continuously to produce a feature
frame which encodes "constancy” values of size, hue, etc. The depth map i1s needed
in the SEF to aide in constancy calculations and. in fact, there upﬁeur to be a number
of other auxiliary calculations needed as well [Ballard, 1982]. The four units of the
SIF currently mapped to the fovea of the RI' dominate the calculation of feature
values, but an overall consistancy must be maintained.

‘The peripheral 36 units of the retinal frame are assumed (o play a different
role. If the SEL is blank, as when a new scene is first encountered, each unit in the
RI° provides the same value to all the (1, 4, or 16) units in the SI'I' 1o which it is
currently mapped. These crude values become the basis for the initial relaxation
towards constancy features in the SI'I' and (because they are there) begin indexing
the visual primitives in the WKI. This crude indexing is assumed o provide some
guidance to the choice of fixation points for further analysis of the scene.

When analysis is well under way and the SI'I* is not blank, the periphery is
assumed to function in a "change detection” mode. The coarse values compnlcjhy
peripheral units are compared with average values from the (1, 4, or 16) SI'l" unity
covered. If there is too large a difference, an alerting signal is activated leading (in
the simple case) to a saccade to the place of change. The SI'l' is also assumed to
contain networks for "smooth continuation” of visual properties across fixations.
The networks for continuity and "filling in" phenomena are assumed to interact with
the coarse values computed by the peripheral RI*. ‘There is a wealth of data on
visual illusions and meta-contrast phenomena which constrains the choices of how
these networks function and interact.

Recall that this entire discussion is ignoring what we have called the "pursunt
mode"” of the system. In pursuit mode, the periphery does not alert on all changes
but is assumed to still be sensitive to optic flow patterns indicating collisions. Pursuit
mode is discussed in Seclion 4.4.
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Figure 3.1: The six feature (+ depth) planes
for the small world SFF
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o Figure 3.2: A typical network representation of visual objects
e in a situation
o [Ballard and Brown, 1982]
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4. Small World, expanded.

The purpose of this section is 1o address a variety of technicul questions that were
suppressed in the previous overview, still without seriously confronting experinental
data. The technical questions are all addressed relative 1o the specific formalism
described in Section 2, but most of the questions would arise in any attempt to
model vision and space at the current level of specificity. We will tollow the same
order of presentation as before, but will also include discussion ot some links among
the four frames that were ignored earlier. Most of the specific solutions to techmcal
problems will be carried out at the Small World scule. hopefully making it caster 1o
see the ideas.

4.1 The SFF reconsidered.

‘The first technical questions concern the assumption that the Stable |eature
Frame (SFF) can continuously maintain values for the hue, saturation. size. shape.
color, texture, motion and distance of features in the current ficld of view A large
fraction of the current effort in computer vision is focussed on these problems and.
while a great deal is known, quite a few problems remain. Withoul attempting to
survey all this work, we can indicate extensions to the Small World SI'l' model that
make it a reasonable abstraction of our current understanding of constancies ( --
intrinsic images = extra-striate visual maps).

‘There was a certain sleight-of-hand in the previous description of SEI
functionality. In order to even define SI'Y' features like shape and size, the image
must already be segmented into regions, and we have not specified how this
segmentation is to happen. (This is our first technical problem and is typical of the
ones to follow.) Our notions of how region analysis and feature extraction are
cooperalively computed is described in detail in [Ballurd, 1981]. The basic idca is that
the SI'} also contains paramelter space networks representing the relative importance
of different feature values in a given scene. Color is a particularly easy example to
examine, Our ten values of hue and lightness yield 100 color values that could be
present in a scene. Imagine one unit for each of these 100 values whose activity is a
measure of how much of this coior is in the scene. Now consider the mosl aclive
color and the points in the SI'I° whose hue and lightness yield that color. This
collection of identically colored points is a good candidate for a meaningful region,
especially if the points are adjacent. If there is no significant variance in depth,
texture, or motion over such a region, it will almost certainly be segmented out and
its size and shape can be computed. When the various features do not agree, people
have trouble with segmentation (e.g. camouflage). Algorithins for forming distinct
regions within a cellular computer like ours are not trivial, but are in the literature
[Minsky & Papert. 1972). The size and crude shape of an identified region could be
calculated by a parameter network [Ballard. 1981]. We assume that for mdexing, the
properties of a region are represented by the unit at 1ts center of mass, with the other
units reporting null values.

Current Computer Vision research is directed ut a shghtly less abstract set of
constancy features emphasizing e.g. local surface slant and tilt mstead of our shape
features. ‘There is no reason why the SEL could not incorporate muluple levels of
features and we expect that it will have these as well as global parameters such as the
direction and color of illumination. The model also should be refined 10 account for
the fact that there are order relationships among the teatures. It turns out that depth
precedes lightness [Gilchrist. 1977) and that region properties like size and shape
presume some segmentation by depth. color., motion and texture. All of these
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calculations do interact with each other as well as the with the bidirectiona! (indexing
and context) links to knowledge of the appearance of objects (WKI"). The model
presumes that this giant network relaxes into a consistent stable coalition (Section 2)
and preliminary simulations [Sabbah, 1981] are encouraging, but a great deal of work
remiailns before we can have real confidence in the compulational stabilily of the
model.

Another important issue is the role played by points of discontinuity (edges) in
the SI'F. Both the behavioral and physiological data indicate strongly that the visual
system responds primarily to differences (e.g. in color), but the SI'I' encodes point
values of features. The model uses the SFI- primarily as a buffer memory and for
indexing - both functions are better served by attempting to caplure the (constancy)

values of visual features. It might be useful to add additional planes representing,

e.g., depth discontinuities, to the SI'I* and there is no problem in doing so. Depth
disconlinuity points would be particularly useful in grouping regions into separate
objects and this, in turn, would greatly simplify indexing (which is a mugnr technical
roblem to be addressed below). More generally, the conversion from retinal
difference) information to SI'IF (constancy value) information is a major prediction
of the model. The model postulates that the SI'l° continuously computes, among
other ]Lhings, smooth continuation values for feature plane units not foveated
recently.

In Section 3, we described the RIF - SEI' mapping as involving moving the
logarithmic retinal frame over the SI'T* spatial map. The next task is to show how this
is accomplished using the mechanisms of Section 2. The same idea of a variable
mapping will occur repeatedly below. All of our variable mappings will rely on
conjunctive connections; the particular scheme for the RI* — SI‘I* map is shown in
Figure 4.1. First consider the case where a position in the SEI' is currently covered
by a equal size piece of the RF. For example if gaze were directed to ils maximum
extent in the upper right corner of the field (8,8), then the SI'I* units at position (6.5)
would get values from the RI' unit (64) in the spiral numbering order. This is shown
in Figure 4.1 as a conjunctive connection on the (6,5) unit of links from [gaze =
(8,8)) and RF position = (64). The same gaze value maps RI‘ position (73) 1o SI'l*
position (9,5), and so on. Also shown is one of the 64 other conjunclive inputs to the
SFF (6,5) units; this for gaze (7,8). The mapping for unequal sizes of RI* and SI'I*
fields is only slightly more complicated. Coarse RI* units map the same value 1o
several SFF units. I'ine RE units would have to compute some summary value of
their findings, for each of the seven planes of the SI‘I*. There is no difficulty here in
mapping, but the nature of the RI‘ foveal computations and their use is a technical
question to which we will return in Section 4.4.

Figure 4.1:  Mapping retinal to SFT" coordinates, Detail

Another general issue is the choice of one unit per feature value as a basis tor
representing information. Although this unit/value principle is a convenient way to
build models and appears to be a reasonable abstraction of the experimental data,
the real situation is more complex. Even on pure computational grounds, it is imuch
more efficient to use some encoding tricks such as the coarse-fine coding trick
described in Section 2. These tricks also exploit conjunctive connections to reduce by
a large fraction the number of units that would be required lo capture a given level
of precision for a feature value. The assertion here is that these technical tricks are
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sufficient to solve the problem of combinatorial explosion in the number of units as
we move to realistic numbers. Our exposition will continue o employ pure value
units (e.g. in the planes of the SI'I") with the understanding that any physiological
predictions would have 1o be translated to realisitic encodings.

4.2 Indexing and Context Mappings

In this section we attempt to confront a complex sel of interacting technical
questions upon which the viability of the provisionary model will stand or fall. The
crucial issue is how to convert from a spatial, visual, syntactic representation to the
more general, modality-independent semantic network which is claimed o embody
one's world knowlege. Esssentially the same problem arises in any formulation and
our attempted solutions may be of some heuristic value even 1if the four trames
model turns out to be useless.

Recall that Section 3 presented a simple and direct model of indexing from visual
features (SFF) to visual primitives (WKI-). A primitive was simply any node (-~ unit)
in the WKF which could be indexed by a vector of feature values. Although it was
not stated explicitly, the implication was that conjunctive connections would be used
to activate the visual primitive when the appropriate feature values all appeared at
the same point in space (and thus in the SI'I). More complex objects and situations
were assumed to be built up recursively from primitives using standard relationships
(e.g. "below") from semantic network theory. In addition, context links from the
WKI‘ to the SFF were supposed to prime certain feature value units from general
knowlege and expectations. The remainder of the section lays out how the model
does all these things without attempting to specify the details of semantic network
representation in the WKF, this being a major intellectual problem, independent of
vision and space.

The classic problem in parallel models of indexing is cross-talk or confusion of
features. If a red circle and a blue square appear together, how does the paralicl
network avoid activating the red square primitive? The obvious way to handle the
red-circle, blue-square problem is to have a red-circle conjunctive unit for every
position in the visual field. This quickly becomes infeasible for more complex
combinations of features. For example. in the Small World with six 10-valued
features, one would require a million units for each position in the SI'l* in order to
implement our naive notion of mapping from visual feature vectors to visnal
primitives. lor realistic numbers the problem grows too fust for our coding
techniques [Feldman & Ballard, 1982] and other ideas must be invoked. The
particular solution used here (o the feature-cross-talk problem will be presented in
some detail, both becuase of its importance and as an indication of how the
elaboration of the model is proceeding.

The basic idea is to maintain spatial coherence tor all pairs of property values and
to index use conjunctions of pairs. Figure 4.2 depicts the basic situation for a golf
ball in the Small World. We assume for now that the appearance of a golf hufl 1S
characterized by exactly one value for each of the six visual features, appearing
together at a point in the visual field (SEF). There are 15(5 + 4 4 3 + 2 + 1) ways
of making pairs of values from six features, any subset of which could be used for
indexing. Suppose we just use shape conjoined with each of the others, yielding five
pairs involved in the indexing of golf ball appearance. The important pomt is that
the fealure-tpair units are all spatially independent; there is only one white sphere
unit. The teature-pair units are themselves activaled only by the simultaneous
appearance of their component features at the same point i the visual ficld (Figure
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4.2 shows size and shape at (1,6) in the SI'T"). For the Small World, this would mean
3 100 conjunctions of two inputs each to feature-pair cells. [f ull 15 pairs were laid oul,
- there would be 15 x 102 or 1500 pair units because each element of each pair could
;. have ten different values. Even counting the 100 separate input sites to each of these
R pair nodes as a unit, one gets only 150,000 units as opposed to the 100.000,000
- needed for directly encoding each vector of 6 feature values at each position. Since
each feature pair unit responds to the entire visual field, the model automatically
generalizes from an object learned at one spatial location.

PN

T 7T 4 v
P .
. .

Figure 4.2: Indexing and Priming, Detail

What price do we pay for this dramatic reduction in unit count? ‘The main cost is
an increase in the chances of false indexing, the feature-cross-talk probleni with
which we began this section. While each feature-pair is required to be spatially
coherent, the pairs could all come from different parts of space. 1'or exanple, if an
orange at (4,7§)and a flying ping-pong ball at (1,6§)occurred in the same image, the
network of Figure 4.2 could falsely activate golf ball. In a more complete version .
with all fifteen pairs, several pairs (pocked flying, pocked white, pocked 1-inch)
would not activate and this might be enough to prevent falsely activating golf ball.
Other factors include mutual inhibition by ping-pong-ball and the effects of the
situation context, but there remains a possibility of false activations through
coincidence. In fact, just this kind of cross-talk is found in [Ireisman, 1982) One
cannot effectively index the entire scene and must use fixations and internal focus of
attention to deal with things sequentially. Changes in region grouping and probleins
like transparency also require sequentiality.
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There are also some minor technical questions to be answered about this scheme,
One obviously must allow for indexing by more than a single value of various
features. There are two cases, both of which fit quite well with other aspects of the
model. When a range of values (e.g. lightness) 1s possible, we assume indexing is
done with a coarse-valued cell which we need for other reasons anyway. It no vilues
of some feature are criterial (e.g. hue of jelly beans). that feature i1s simply not used
in indexing. Also, the sjunctive input sites of Section 2.2 provide a natural way of

riaiali e

encoding separate visual appearances of a single primitive. The hard problem is how 4

all this structure could get built for new objects. and this will be treated fairly K

carefully in Section 4.5. g
Once an object instance has been recognized. it has a representation o the

current situation independent of whether it is currently i view. lor top down
context mapping to be effective, there must also be a link from visual primitives in
the WKF to their component features in tiie SI'lI°. Assuine that the links without
arrows in Figure 4.2 are bi-directional. Then anticipating the appearance of a golf
ball would prime all the appropriate feature-pair units (e.g. 1" sphere). The feature
pair units could, in turn, prime the appropriate feature-at-position units (e.g. sphere
at (1, 6), 1" at (4, 7)). This would give some advantage in the WTA compelition al
each point 1o anticipated features but could not be very effective because it would be
identical across the visual field (SI'lY). A much more powertul contexl eftect can be
achieved by adding spatial focus units depicted as a diamond unit in Figure 4.2. lach
spatial focus unit could conjoin with context links so that only the anticipated
feature-at-position units were primed. Spatial focus has been shown [Feldman &
Ballard, 1982] to be a general solution o many cross talk problems and appears 10 be
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related o attention [Posner, 1978: ‘Treismun ef al.. 1980]. The coordination of spatial
focus with the action of the RI' will be discussed i Section 4.4,

Meanwhile, for spatial focus to be feusible, une needs @ mappug trom the
instance (hexagonal) nodes of I'igure 4.2 1o the spatal tocus (drunond) ones. Such a
mapping encodes the (rapidly changing) information that some object instance is
currently at a partcular position in the visual field. This 15 just the kind of mnapping
for which the uniform connection networks of F'igure 2.4 were developed. Once the
links are established, the activation of eitker a spatial position or an object instance
will strongly prime the partner. It 1s also not difficult to augment the spatial focus
network so that the expected position of visible objects atter head movements can be
primed. 'or both computational and scientific reasons, the current model assumes
that this expectation is done for only one object and the rest of the SEE s
recomputed, using a little context priming but mostly direct visual input.

Complex objects (and situations) are represented in the model as networks (in the
WKI) of nodes describing visual primitives or other complex objects. There are
tremendous problems of several different kinds in these semantic network models
and these are the subject of the next paper in the current series. Our goal here is just
to provide a plausible (although crude) model of how network representation of
visual appearance could fit in the four-frames paradigm.

As mentioned in Secuon 3, the basic idea is that each visual primitive ol a
complex object is represented by a node that corresponds to a particular set of
feature values as computed in the SI'T'. Since indexing from fealures to primitives
occurs in parallel, there will usually be several simultaneously active primitive nodes
for a complex object currently in view. This simultaneous activation of subparts will
tend to cause the correct complex objects to be activated, independent of the details
of how the relationships among the subparts are modelled. When we consider the
details of complex object representations, a number of difficult technical problemns
arise. This is the subject of Hrechanyk's forthcoming dissertation [Hrechanyk &
Ballard, 1982]. and we will be content here with a loose discussion. based on the
example of representing the visual appearance of horses. Recall that the WK1 visual
appearance models are far from complete -- they are more like a verbal description
of something not currently in view,

Obviously enough, the side and bottom views of a horse have relatively litde in
common. [iven within the side view, the horse could appear in a varicty of
orientations and scale configurations and the relative positions of its subparts could
also differ considerably. We must also account for the facts that there could be
several distinguishable horses in a scene and that some of these may be partially
occluded. Our current solution, depicted in Figure 4.3, involves instance nodes,
separate  sub-networks for different views and cross-referenced  structural
descriptions, The prototype horse has a general hicrarchical description where, e.g..
the trunk is composed of a body, legs and a tail. What visual primitives might be
involved in recognizing a horse will depend on whether it is a front, side or other
view. Thus the matching process would select together a prototype and a view which
best matched the active visual primitives. I'igure 4.4 shows a typical relation in the
triangle notation of [Hinton. 1981]. As always. there is assumed to be mulual
inhibition among competing object descriptions and view nodes. A serious weakness
of the current scheme is that it has no verification apparatus for checking that the
pieces of the putative horse are all connected in appropriate ways. A CM approach to
the verification of the detailed geometric correspondence between a WK1 model and
an image is described i [Hrechanyk & Ballard, 1982]. Thew solution requires an
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auxtliary structure for computng the correspondence and entals a hicrarchical
matching strategy that is compatible with the hierarchical descriptions i the WK1

Thus far our discussion of object recognitton has been traditional 1 s treatiment
of occlusion--we 1gnored it entirely, We did discuss discontunuities (edges) carhier m
this section and certain discontinuities (e.g. depth. motion) provide cues to possible
occluston. A more thorough treatment would include explicit occlusion teature
recognizers in the SI'L, but this requires no qualitative changes. ‘The hard problem is
how to make use of occlusion cues in matching partial collections of visual features
to appearance models. Our indexing scheme does not depend on totally matching
features with primitives, but we need (10 make much stronger use of occlusion
information.

The best use of occlusion intormation would be 1 connection with spatial focus
and the kind of successive refinement of muatching described in [Hrechanyk &
Ballard, 1982]. Occlusion cues such as depth disconuinuity could be used to separate
areas of space believed to index separate objects and the appropriate subparts
matched in the SI'I'. One could also add general matched by occlusion links to
higher [evel nodes in the object appearance models [Sabbah, 1981}, 1f we are able 1o
compute the overall posttion and scale (tairly accurately) ot the occluded object. then
the varicus visible pieces could be separately foveated and used o dex. I'lis is not
much ditferent than what is needed to recognize an unoccluded ohject that occupies
a large amount of the visual field. Presumably the nstance nodes recruited tor the
various objects could include occlusion lirks tied to the current situation and
viewpolint. In important cases, this occlusion intormation could become part ot the
situation description.

Another major problem is multiple horses i a scene. To represent mltiple
horses clearly requires some kind of "instance” nodes to keep track of the postlions
and properties of the various horses in the scene. The model assumes that people can
deal with a few instances, but must recognize (foveate) one at u tume for indexing to
work. Basically we assume that when a particular horse tmstance 18 foveated. the
position, structure and other features are simnltaneously active. The instance "node”
1s the set of binding units (Section 2.4) recruited to hold the coalition together. The
statistics of recruiting would be between the umform networks of Figure 2.3 and the
random networks of Figure 2.4 since there is an intermediate amount of structine.
‘The coalition representing the horse instance at  position could also include nodes
that captured detailed orientation parameters and presumably even concepts like gail,
although motion presents problems not yet solved.

The model also includes in o natural way the occurance of spedial nodes aind
structures for particular horses that one knows well. Learning the appearance ot .
new object, such as a centaur. 1mvolves synthesizing new structures which make e
of existing substructures. Such permanent structures are presumed 1o afise rom
temporary coalitions by strengthening connections as described 1n Scection 2.5 and
[Feldman, 1981]. The model suggests that people with horse structures for particular
horses, breeds, liveries etc. should be able to eftectively represent more comple
scenes without cross-talk. We will return to the role of network strictures and
foveation in the section on the retinal map (4.4). The next opic is “sttuations™ which
are. WKL networks which may imclude several complex objects.
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4.3 Situations and the EF

We are, again, tracing around the four-frames diagram of igure 2.1, Recall that
the Environmental I'rame (I'I°) 1s postulated (o be the mulu modal representation of
the objects in the current situation. As was the case with complex object networks,
the WKI- network representing a situation will be more ltke a verbal descniption or
sketchmap of something not currently in view. The nodes of a situation network
represent either objects or sub-situations. in exact analogy to the networks for
complex objects. The situation networks are assumed o be oriented by compass
direction and 1o contain some distinguished objects that serve as fandmarks. Situation
networks can be conditionalized on points in time or seasons of the year.

We assume for now that only one situalion Is active al a given tme. Since the
active situation network is a stable coalition, all of the object and sub situation nodes ]
are also active to varying degrees, providing top-down context to perceptual
processes. So far, this presents no technical difficulties; the problems arise in relating
the current situation (in the WKI-) 1o the hypothesized spatial frame in the Ll

Recall that the EIY was assumed to be organized as units representing fixed
positions in space. The LI is organived around cardinal directions which we call ]
N,E,S,W and Up and Down. The model suggests that this spatal frame does not [
necessarily change with body movements; it is an allocentric rather than egocentric
representation. The position and orientation of the ego withm the LI is also
maintained at all times and used in directing actions. Conceptually, one would like 1o
be able to map the current situation network (from the WKIY) to the I:I' such that 1
each landmark object is mapped to 1ts canonical position. This would enable the
model to anticipate what should be seen at different positions and scale values in the
environment and where to look for expected objects. Technicul problems arise n
trying to lay out these WKI-EI® mappings in a way that has plausible resource
requirements and is resistant to cross-talk.

Lad ol olng. -

The basic form of our technical solution 1s shown in Frgure 3.5, The central 1dea
1s to use special situation nodes (depicted as ovals in Figure 3.5) 1o bind together the
mapping from a fixed place unit in the L' to object units in the WKI" that are
expected at that place in the active situation. l-or reasons we will get 1o later, there 1s
no link from objects in the WKL 1o their positions in the LI, Conjunctive
connections link a position in space, represented by an I'I- unit with a partucular
object node in the WKF. When a particular situation node (e.g. Harvard Square) i
activated, then activation of a particular I'IF node (Last, Middle distance) could lead i
to activation of a node in the WKI' representing a middle distance view of the {
Harvard Coop. The model assumes that the amount of I:I' - WKI activation 1s :
related to foveation and atiention. There are also implications for retinal (RI%)
mappings which we will discuss in the next section.

A Bl 8w

There is a nice correspondance between the hicrarchical situation representations |
in the WKI' and the [I' representations ot space at ditferent scales. The expected !
view of a landmark object in a situation depends on both the direction of gase and :
the computed position of self relative to the LI Moving close 1o an object o% interest
could lead in a natural way to switching activation to a sub-situation which has a
more detailed view of the object. The model thus suggests that situaticn nodes are
arranged in a discrete hierarchical structure. and that changes of visual context are
discrete. In addition to scale change. other reasons for changing the (unique)
currently active situation include moving out of a situation or passing a particular
landmark [Kuipers, 1973]. We also wsume that a change of nternal focus of
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attention is usually accompanied by a switch in active situations. The model can also
accommodale scenarios (time sequences of situations), but we will not deal with
scenarios in this paper.

LT WeT R R

There appear to be no technical difficulties in the CM representation of these
ideas. Counting arguments limit the number of situation nodes to a few thousand.
but this seems plausible. Some situation networks are assutned (o be general (c.g. ]
office) and used when no more specialized network is available. New situations are o]
assumed to be handled by recruiting additional binder umits linking landmark objects
with their EIY positions, using the techniques of Section 2.4. 1t is this collection of
binder units that we refer to as a “situation link."

F

g s Ao

The amount of and accuracy of information captured in a siuation network s
quite low, but this appears to be consistent with what 15 known about people. One
consequence of the model in its current form is that there is no link from an object
situation pair to the EIF node where it is expected. One could easily add these links
but this would lead to vast numbers of input links to each I'l' node violating a
constraint, In addition, these WKIF'= L:}F connections could cause confusion belween
what objects were being activated in the WKI and where gaze was directed. The
model currently allows one to think about one situation while visually coping with a
different one, as long as the non-visual situation does not evoke (simulzucd% spalial a
reasoning or action. For the model, the position of objects in a situation is
represented relationally in the WKI- only and one’s ability to locate objecls nol
currently in view should be crude, unless a need for recalling the location was
anticipated. This is typical of the kind of crude prediction of experimmental
consequences which will occupy us in Section 5.

il b

4.4 Foveation, Pursuit Mode and the Retinal Frame
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‘The logarithmic scaling of I'igure 3.6 1s about all that has been specitied so far
about the Retinal Frame (RF). The model assumes that the RI- continuously
computes proximal (non-constancy) values of visual features and transmits values (o
the appropriate SFI- units depending on the direction ot gaze (I'igure 4.1). Obviously
enough, the RI- is intended to correspond roughly o primary visnal cortex which is.
by far, the best undersiood of the four frames. We will consider in Section § the
evidence on what the units in primary and secondary visual corlex compute and
whether RI©-SEI' distinction makes sense of the data.

Y

Ll

I'or this section, the crucial questions are comptuational. One conputational
refinement that is required is that units in the RE* can not be assumed to respond 1o
only one feature. As we have seen, units that respond coarsely along some feature
dimensions and finely along one dimension have computational advantages and we
assume that this is the nature of RI" units. More difficult problems arise in specifying
computationally how the direct measurements of the RI" car ‘. translated (o the
features postulated for the SIFF. [ et us consider motion, which is probably the most
difficult case.

-A‘-‘-"A‘l'

e 4

IFor RI units in a static eye, motion is indicated by “retinal slip” i systenalic
change in input among neighboring units. It is not, a priori, obvions that this local
information I1s enough to determine the object motions and light changes that could
cause the retinal changes. Recent research in our lab and elsewhere [Brady. 1982] has
shown that these "optical flow" calculations are feasible under a runge of conditions
sufficiently general for the purposes of the SFI- model. which is not hypothesized to
be pertect. The other SFI° features  hue. hghtness. size. shape and surface texlure
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are assumed 1o be computed cooperatively trom R measures of tocal detectors ol
orientation, motion, spattal extent and disparity with difterent spectral tnning. The
details of how the RI-SElY computations are specttied 1s w major part ol current
research in computer vision {Ballurd & Brown, 1982]. The totality of this work s
sutficiently advanced 1o give us contidence that these computaional issues will not
be a muyjor hurdle. Whether or not any such algorithms are used by natwre 1s a
primary experimental question raised by the tour trames model and Scchion > will be
lurgely concerned with this issue.

‘There are some other purely computational issues relating 1o the REF particularly
stereopsis and pursuit mode. Very little has been suid so tar about binocular vision,
because the current model asstgns it no great role. ‘The S s asstmed in the model
to be cyclopean and to incoporate two RI' readings and disparity information when
avallable. ‘The visual field covered by the SI'l' is partly monocular in any event. We
have discussed gaze and saccadic eye movements briefly in a couple of places. The
model says nothing explicit about the choice of fixation patierns although the WKI-
networks for complex objects and situations would presumably help direct saccades.
The question we now address 1s how foveation cttects mdexing.

‘The basic four trames paradigm assuines that mdexing (and 1 inverse, context)
occurs continuously everywhere in the SEFI. It also assumes that indexing s
"stronger” al the place currentiy being fixated. In Section 3. we saw that this
strengthening was a combination of selective lop down activation (through the LI
and situation links) and selective bottom-up activation of the places in the SI'I
currently mapped to the foveu. The third strengthening ettect described there was
the ability to use directly the more accurate calculations ot color, exture, elc.
achievable by the fovea. This amounts to postulating a direct RI- WK1 indexing link
not shown in the four-frames diagrams. Such a link would be much suupler than the
one described in Section 4.2 because 1t would not need spatial coherence and
presumably would not have a top down context inverse.

A direct RIF-WKI indexing link 1s also usetul when we consider the " pursun
mode" of the visual system. As we saw in the introduction. it is totally ditterent to
track your finger across text than it is to read following your finger. The hiterature
refers o the former as the pursuit svstem but we prefer the term mode because much
of the same structure is used in both modes. Our assumption is that the system
operates in pursuit mode both in tracking a moving target and while the observer 18
moving under visual guidance.

Obviously enough. the purpose of pursuit imode is to keep a visual targel toveated
despite target and/or observer motion. Pursuit is gualitatively different in the four
frames model because the accumulation of stable constancy data by the S can not
be the same in pursuit mode as it s in scanning a static scene, In scannimg, the
periphery of the RI' receives input from a fixed scene (at varying resohition). During
pursuit, the periphery sees a rapidly changing scene In fact there are secial
mechanisms o prevent vptokinetic effects in the periphery from distupting pursuit
[Carpenter, 1977]. The model suggests that certain RI'T tunctions such as depth and
3-D motion of the target must be computed in scannimg mode betore pursint, During
pursutl, we assume that the primary mdexing occurs between the RE and WK
refining the parameter values originally computed by the REL. Meanwhile two other
computations are active. Opucal How calaulatons we wssumed to be continuously
operating in the RI-, allowing the detection of potental collisions. the WK s
assumed to continue to register (low resolution) pertpheral mput from the REas best
1t can. ‘The question of how much recogmnion (indexing) of peripheral objects oceuns
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is assumed 1o be one of attention: if the tracking task 1s not oo demanding, soime
SEFEF=WKI computations can be fit in. Such computations interfere with the

*. convergence of the tracking function and are suppressed under heavy load.

<

- When the observer is moving, the situation networks tmust wlso be brought tnto
" play. We postulate that the observer navigates by successively fixating and tracking
e landmarks. Again, peripheral vision and the SI'l' can do some recognition if the
L tracking is not too demanding. Peripheral vision, prior knowledge and occasional
i scanning-mode saccades enable the observer to mamtain a Sttuation network
< adequate to provide successive landmarks.

£ 4.5 learning in the CM VFour-Frames Model

Acquisition of new knowledge has been the most ditficult problem i the
development of CM and related paradigms. Our CM model includes an assumption
that there is not enough growth of new connections 10 account for adult learning,
and changing of weights must suffice. The problem becomes particularly acule in the
current context, because we must model the continuous play of transient information
on the WKI as well as the incorporation of some of the information into permanent
structures. ‘The basic 1dea 15 to exploit the fact that randomly connected networks
can essentially always be made to capture the required information using only
weight-changing.

s

‘The current model assumes that the basic structure of the Retinal (R19), IFeature
(SFI) and Environmental (I'F) frames are genetically and developmentally
determined and do not change in normal learning. In particular, the coherence of the
spatial representations and the mappings between them are assumed o be in place.
In this case, most learning takes place in the World Knowledge l'ormulary (WK1
which encodes the observer’s knowledge of the particular objects and situations that
it has encountered. One must also learn the indexing - context links between the SE1
and WK and have a way of recruiting situation links to relate the I:I' to situations
in the WKI. A more realistic model would include some plasticity in all of the
frames, but the same basic considerations seem to apply.

el
.
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All of the learning in the model is assumed 10 be accomplished by the same

{somewhal magical) algorithm described briefly in Section 2.4 and more carefully in -
Feldman, 1981]. The algorithm exploits the fact that large random networks have a g
radically skewed distribution of connections to a small subset of nodes. l'or example, 3
in a graph of 1,000,000 nodes with 3000 random connections each, there will be ?
about 29 binder nodes with three or more links into a set R of 20 randomly chosen .1

nodes. If these binder nodes could be recruited properly, the binder nodes plus the
previously unassociated recruiting base R would form a stable coalition. This stable
coalition would be a form of coherent active memory and could serve as the basis for
permanent learning of the coalition as a "concept.” Section S of [Feldman. 1981] is
concerned with describing plausible CM algorithms for all this and we assume here )
that the arguments there are sound. ' |

.
L
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The idea, then, is to assume that there are pools of randomly connected units
available to be recruited for binders. Consider the hexagonal node in Figure 4.2. One
clearly needs such instance nodes (o be able 1o distinguish the various golf balls that
might occur in a given situation. In our model, such instance nodes are recruited as
being the small set of units that bind together the crucial information--here the facts L)
that the object is a golf ball belonging 1o I'red in situation 67. It there were some -
other noteworthy fact (e.g.. it was pink) the recruiting algorithm would include the .
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appropriate units. Usually the recruiting of a node for a visual object instance will
include spatial relation links to other objects (particularly landmarks) in the current
situation. We can now see that a "node” in the WK1 usually consists of some binder
units with connections to the various concepts semantically linked to the new "node™.
Instance nodes are often transient, but sometimes gel incorporated nto a new or
modified situation description. It will come as no surprise that the "sitnation Links”
hypothesized to link positions in the EI' with objects in the WK1 are also randomly
recruited sets of binder nodes. If a situation 18 deemed 1o be important (or
importantly changed), recruiting is initiated. linking the activated objects and
positions 1n a coalition held together by the binding situation links, Obviously
enough, a great deal more work is required on the details of these algorithins, but the
general idea seems no flakier than several other aspects of the model.

I en assuming that random recruiting will do all we ask of 1L, there remain
questions of how the detailed WK structures get built. The central question here 1s
the extent to which we should postulate pre-wired structures and how much can be

attributed to recruiting. This is, of course, the nature-nurture issue appearing i ils’

CM manifestation and is not something to be treated in passing. A fecling for the
problem can be derived from Figure 4.3, some WKI structure for horses. It seems
reasonable to me to suppose that some crude structure represznting the general
nature of animals (other moving things in the world) may have evolved from whal
the Frog’s eye appears to tell its brain. The only alternative (within CM) is to assune
that all such structures are learned and generalized from experience. The next paper
in this series will attempt to deal more carefully with the relationship between WKI:
neural nets and semantic networks.

I'igure 4.3: General views of horse

Assuming that the SI'F structure and the basic structures of objects in the WKI-
are understood, the index-context mappings fall out nicely. Consider the detailed
golf-ball mappings in Figure 4.2. The built-in structures are assumed Lo include all
the round and diamond-shaped nodes and their connections, The general golf-ball
node is seen to be recruited as a binder linking the appropriale property: pair units
with units reprsenting other aspects of golf-balls and their place in the universe. ‘The
random recruiting process specifies that the binder links be bi directional, so that
indexing and context should work as suggested. L:xtending all this to coinplex objects
like the horse of Figure 4.3 appears 1o be feasible, especially if we assume some pre-
wired structure, The point of all this is to provide a crude base for the claim that the
four-frames model is not obviously wrong. The final section examines the clanun a
litdle more carefully in the light of a variety of experimental findings.
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5. The Small World and the Real World

The major daim made tor the Four Trames Model s that 10 consistent watte all
the established tacts about vision and space. Tt will now be clear 1o the reader that
the daim s, at best, a qualitative one: no particular systems or range of phenomenia
have been modelled at a scientitically adequate Tevel ol preciston. The parpose ol
this section is o explore the qualitative adequacy of the Tour Trames Model and 1o
describe some ot the experimental results that fed o its current torm. Not
surprisingly, I am currently unable to perceive any experimental results that do not
fit within the model and need to have them brought to my atlennon.

One of the basic criterta used o the tormulation of the model 1 that 1t be
mtuitively  plausible. The discurstve presentation ot the tour frames o the
introducton is also intended to suggest why the choices are reasonable. We make no
turther appeal to intuition here, but would be nterested e reporis of intuihive
dissatistaction with the model.

The current paper arose out of an attelipt to spectly more precisely some aspects
of the connectionist model of visual memory described m [I'eldman, 1981]. We first
had to develop a technical language for specitying connectiontst models and learn
how 1o use the language on non-trivial problems [I'eldman & Ballurd, 1982; Sabbah,
1981]. Before taking the formalism too seriously, I also had to convince myself that it
was capable of incorporating short- and long-lerm change [Feldman, 1982] This
formalism, outlined in Section 2, has been stable for some tme and 15 also being
used in a varety ot other tasks [Small, 1982; Hrechanyk & Ballard, 1982]. Tts role
here is 1o support detailed computational/anatomical representations of the various
processing functions hypothesized for the model.

The behavioral and neurobiological coustraints on the model were chosen as
broadly as possible. T dehberately attempled 1o mcorporate only the least
controversial and best estublished findings. This decision fits well with the relatively
abstract level of the current model. 1t should not require delicate experiments or
arguments 1o point out structural flaws in the Four-Frames model. Somie potentially
revealing experiments will be suggested later in this section, It is, of course,
enormously easier to suggest experiments than to carry them oul. The main purpose
of this, or any other model. is o help suggest questions that are worth the
experimental ettort.

Muny of the elements of the tour trames odel vall be casily recognizable to
workers in Al ‘The Stable Ieature I'rame has much i common with Ballard's
parameter networks [Ballard, 1981] which 1s itself an extension of the intrinsic image
notion which is currently a major topic in Computer Vision. The active semantic nel
of the World Knowledge Pormulary fits mto almost any current knowledge
representation scheme in Al or cognitive psychology. The Environment I'riune and
situation links are also quite hike the Al models of space |Kuipers, 1973 McDerinmoll,
1980] to the extent that they have been worked out. The reason for mentioning all
this here is 1o suggest that the basic computational paradigms selected for the four
frames are consistent with current mamstream Al notions of how these tunclions can
be accomplished. The translation to CM terms is only partially specitied m this
paper, but there should be enough material 10 indicate that the standard Al
structures and algorithms are expressible i terms of neuron hke compulting units in
a way that 1s compact and fast enough 1 be plaustble.

There are two lines of computational cxperiments that might be added to the
work already underway. The small world system could be simulated as specified. The
pertormance range would be timited but one could learn quite a ot especially from
the S WK interactions. One of the nice features ot the maodel s that it solves the
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old Al problem of converting from numerical to symbolic representations of a scene.
A second line of experimental Al work could focus on situation maps and the LY. 1L
would be very informative to see if hierarchical and sequential sitnations could be
implemented and whether multiple situations could be worked out computationally.

But it is not computational experiinent that is most needed at this stage. ‘The
Four-Frames model makes a number of predictions which should be behaviorally
and physiologically testable. Computational requirements have played an important
role in the development of the model, but major constraints have come from the
structure and behavior of the visual system. Most of the assumplions 1 the four-
frames model are part of a widely shared current world view and are nol being
explicitly addressed. What does need more discussion 1s the rationaie for the choices
made in the novel integrative aspects of the work. The experimental basis for our
choices is in no instance compelling: more research needs 10 be done in all of these
areas. Various experimental findings suggesting the central features of the four-
frames model are presented as suggestive.

I'or the reunal frame, the data is greatly ahead ot the model and the theory has
relatively little to offer experimentalists. There are somne new questions lo be asked,
but they are mainly concerned with the relation between the RIF and the SIFF. The
four-frames model assumes that the detailed calculations of color, texture, and so on,
are carried out by the RIF and integrated by the SI'l'. We assume that striale corlex
and the various psychophysical "channels" are at the RI' level. Obviously any foveal
functions are part of the RF, Most of [Marr, 1982] is concerned with RI* calculations;
he suggests a number of experiments that would also be of interest here. The most
interesting prediction of the model concern the interactions between the RI" and the
(hypothesized) SI'F. One would expect mappings 1o extrastriate cortex that depended
on gaze, and mapped RE units with similar response characteristics. I'igure 5.2
suggests that at least the gaze information of [igure 4.1 is available for this mapping
through the [.P-Pulvinar complex (cf. also [Graybiel & Berson, 1981]).

The Stable I-eature F'rame is a major prediction ot the four-frames model. It
presents a computationally plausible and relatively well-specified theory of the
functioning of extrastriate visual cortex. [t is well established that there are reciprocal
connections among most extrastriate visual areas (1'igure 5.1) and that the features to
which each area is most responsive vary [Allman et al.. 1981; Cowey, 1982]. There is
some evidence that extrastriate visual maps are concerned with constancy features
[Zeki, 1980]. Experiments like those of [Mays and Sparks, 1980] demonstrate that
saccades are directed towards points in space, not coded as relative displacements
from the current fixation.

~ With one major proviso, the SI'l' mukes predictions that are subject to
immediate experimental exploration. The proviso is (as mentioned earlier) that SI'lY
units are assumed for simplicity to respond only to a single feature. This is neither
biologically plausible nor computationally efficient, which is a pity because it would
make the experiments much easier.

Given that we are dealing with multi-feature units. the Sl makes strong and
perhaps surprising predictions. One should find visual maps that are both spatially
organized by head position (in an upright stationary animal) and that respond to
constancy values of visual stimuli. These should interact bi-directionally with
parameter maps that are organized along noun-spatial axes; this latter hypothesis is
currently being tested [Ballard & Coleman, 1982|.

The obvious alternative to the SI'l' hypothesis is one that suggests that constancy
and indexing computations are done separately at each tixation. with integration of
the scene occurring only at our WKI- level. The cruvial yuestion is the existence of

P P P T N T R T T T T

]
A
A
4
b.a 1.2 J

LRI A 3 S S --4 |

Ll T

»
]

3
d




spatial maps that are independent of eye position. ‘There are isolated reports of units
whose properties are independent of eye movement [Schlug er al., 1980; Tomnko et
al., 1981], but the usual description of extrastriale maps is in retinal terins. However,
the vast majority of neurophysiological experiments have been done on anaesthetized
or fixated animals and would not distinguish retinal from spatial organization. It has
also been noted that the receptive field size is much larger (up to the entire field) as
one moves lowards more anterior visual areas [Gross ¢t al, 1981]. Since most
fixations are with 15+, the eftective size of the SI'l* could be of the order of the
receptive field sizes found in the extrastriate areas shown in Figure 5.2. ViSllil“g
responsive areas more anterior than these will be discussed in connection wil
indexing and the WKI-.

The psychological literature already contains extensive data on non-retinal
(spatial) encoding of visual data and on constancy calculations [I'isher et al., 1981,
Epstein, 1977; Howard, 1982]. The notion that these are carried out (along with
perceptual filling) by a single structure seems to be consistent with these literatures,
and is certainly testable. Behavioral experiments like the masking work of [Davidson
et al, 1973] give some idea of the interactions of the retinal and spatial frame. In
these letler naming experiments, masks were perceived to overlie the target letter that
was in the appropriate SFI position, but it was the RI position that could not be
identified. The experiments of [Jonides, 1982} suggest that random patlerns can be
integrated surprisingly well across fixations.

There is also evidence of important interactions among SI1° computations. 1-or
example, apparent motion will not occur for objects which appear to be al greal
deglh no matter what choices of retinal spacing and inter-stimulus interval [IHaber,
1982} are used. There is wide range of experiments [Johansson, 1977] on the
interactions of perceived depth, shape and motion, which are directly relevant.
Another example is the work of [Gilchrist, 1977] skowing thal lightness constancy is
applied only to adjacent areas ot the same apparent depth. If the different intrinsic
image calculations interact in the way we suggest, one should be able to predict the
perceptual effects of anamolous combinations. An effort to deal comprehensively
with existing illusion data would be a strong test for the model. One would also
expect that higher-order masking and adaptation experiments [Weisstein, 1978] might
reveal some of the encodings used in the SI'I".

The main use of the SFF in the model was in indexing trom its visual features (o
visual primitives in the WKI. The particular networks used (Figure 4.2) call for
spatially independent units that respond to pairs of visual features. The most likely
anatomical site for such units would be the infero-temporal (I'1) cortex [Gross et al.,
1981). Gross et al. report that units in this area are spatially independent and respond
to complex stimuli and multiple features. The connections known for 1" are also
consistent with the model. ‘There are apparentiy two processing stages belween
primary visual cortex (VI) and IT. The outputs from I'l include ones that could
embody our spatial focus units and indexing links to the WK1, which we presume (o
be subsumed by anterior temporal and parietal structures. Needless to say. there are
alternative treatments of the relatively small amount of intormation known about this
large area of cortex.

Indexing by spatially independent feature pair units 1s only one of a number of
possibilities. Treisman [1reisman, 1982| has a collection of experiments that lumit the
possible performance of such a mechanism in humans. She shows that. under
overload conditions, subjects cannot detect in parallel targets requiring feature pairs

(red square) but can do quite well at single-feature detections. I'reisman hypothesizes

that all feature-pair detections require an internal focus of attention (like our spatial
focus), but this seems to ine 1o be much 100 slow (or coping with natural scenes. 1 his
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is another area in which the model is close enough to existing experiments for useful
interactions.

The WKIF, our network of world knowledge, is the least susceptible to direct
biological experiments of the four frames. In the model, the WK1 is recruited from
all modalities and output areas. Its functions would be subsumed by a number of
areas, presumably in the anterior portions of temporal and parictal cortex. Bulk
metabolic experiments give some corroboration of this view, but all this is not much
more than restating the classical notion of association areas. There is some eividence
for multi-modal-feature cells of the sort required for the WKI* being found in the
Superior Temporal Polysensory area of [Bruce ¢t al.. 1981]. Direct neurophysiological
investigation of the WK1 does not appear to be a promising roule.

Behavioral testing of the WK1 does seetn 1o be feasible al present. There is
considerable work in experimental psychology on spreading activation in semantic
networks [Anderson, 1976; Collins, 1975; Stnith et al. 1974] and a fair amount on
the perception of scenes [Hintzman er al.,, 1981; Palmer, 1981]. The four-frames
model suggests a number of experiments on priming, confounding, and other issues
based on the proposed network structure of appearance models.

‘The cortical structure most likely to subsume the functions of the Lnvironmental
Frame (LF) appears to be the posterior parietal region [I.ynch, 1980; Robinson ¢t al.,
1978]. The f%ur-frames model suggests that 1t is multi-modal, allocentrically
organized and contains sub-structures that encode the current ego position. The FI’
should play a crucial role in hand-eye and other visually guided tasks. Most of these
characteristics have been attributed to the posterior parietal area, but there is still
quite a lot of disagreement on specifics [Lynch, 1980]. The EI' is assumed o act
through situation links connecting to WKI' networks. There is considerable
behavioral evidence that people employ relational, network-like descriptions of
spaual situations [Hintzman et al., 19813, The four-frames models entails a number of
specific predictions about these networks and about cortical connections between 1317,
WK and gaze structures. The constraint of one-way LEI-WKI' is a computational
one -- it seems unreasonable 1o have every object link to its places in the L. The
model assumes that objects in a situation are located relationally (in the WKI*) rather
than in absolute space [Hintzman er al, 1981]. Results from child development
studies could also be helpful here; it is already known that the ability o use
allocentric frames of reference develops rather late [Piagel & Inhelder, 1967].

One way in which the four-frames model vasily oversimplies the visual system is
in ignoring hemispheric laterality. ©ach hemisphere performs visual computations for
the contralateral hemi-field with very little communication before the infero-
lemporal areas. The only systematic mapping across the hemispheres for earlier areas
is of the vertical meridian, which is the border between the two hemi-fields. In terms
of the model, this means that the RI- and SI'I* are duplicated and that our spatially-
independent-feature units (cf. Iigure 4.2) are probably also separate but
communicate across hemispheres. The WKI" obviously would cover multiple
modalities and hemi-fields and would represent the first fully centralized level. There
are a number of aspects of external space known 10 be coded separately in the two
parietal lobes, but we postulate that the LI is subsumed by the right posterior
parietal region. The major problem for the model is explaining how early vision (our
SFF) copes with the swilching of inputs between hemispheres with gaze shifts. This
appears to be a difficult and important issue in any account of vision and space.

Even without new experiments, there is a great deal that might be learned from

trying to fit the four-frames model to existing bodies of data. Doing this at a crude
level has forged the current form of the model. Subsequent efforts are of two
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different kinds: detailed fitting of small segments of data and further relinement of
the global model. Detailed studies are underway at Rochester on the occulomotor
system, on parameter networks in extrastriate cortex and on comiputational modcls ol
specific SFF and WK computations. These studies plus responses to the current
article will hopefully lead to an improved and elaborated second version of the four:
frames model. At the least, we would hope 1o direct some more attention 1o the
global properties of the visual system, which is often treated as a large number of
totally separate problems. The rationale of the whole enterprise is that it is not 100
early to benefit from more general considerations of the problems of vision and
space.
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Figure 5.1: Connections among visual areas in owl monkeys. The areas are as
in Figure 5.2, viz: PP (posterior parietal cortex), DM (dorsomedial
temporal area), M (medial visual area, not in Fig. 5.2), DI (dorso-
intermediate visual area), MT (middle temporal visual area) and
DL (dorsolateral visual area). The primary visual areas are denoted
VI and VII.

From: R. E. Weller and J. H. Kaas, "Connections of Visual Cortex in Primates,"
in C. N. Woolsey, Multiple Visual Areas, p. 137.
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Figure 5.2: The tectopulvinar relay system. Retinal input to the superior
colliculus from Y and W cells is known from electrophysiological studies in
macaque monkeys. Studies in owl monkeys indicate that the superior colliculus
projects to two of the three subdivisions of the inferior pulvinar complex, and
that each subdivision of the inferior pulvinar projects to separate regions of
extrastriate cortex. The posterior (IPp), medial (IPm) and central (IPc) nuclei
of the inferior pulvinar are from Lin and Kaas. The subdivisions of visual
cortex of the owl monkey are from Allman and Kaas. Areas VI (primary visual
cortex), VII (secondary visual cortex), MT (middle temporal visual area),

DL (dorsolateral visual area), and DM (dorsomedial visual area) each contain |
a topographic representation of the contralateral visual hemifield and have

distinctive architectonic features. Areas PP (posterior parietal cortex) and ]
DI (dorso-intermediate visual area) are visually responsive, but their topography

has not been fully determined. The rostral dashed lines mark the extent of }
visually responsive cortex (V), which includes subdivisions not yet fully defined. i

From: R.E. Weller and J. H. Kaas, "Connections of Visual Cortex in Primates,"
in C. N. Woolsey, Multiple Visual Areas, p. 126.
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